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1 INTRODUCTION 

Oscillatory flow motions of surface wave near 
seabed can generate a wide range of bedforms. 
Bedforms are essential due to their effect on the 
seabed roughness and wave-current driven on-
shore/offshore sediment transport. Field and la-
boratory observation on onshore/offshore sedi-
ment transport in orbital ripple regime suggested 
that under onshore velocity skewed waves, sus-
pended load above the ripple was offshore di-
rected while onshore transport occurred as ripple 
migration. These complex processes associated 
with suspended load and ripple migration pose a 
challenge to conventional single-phased sedi-
ment transport models as they require assump-
tions and empirical treatments in modeling sus-
pended load and bedload. We present a novel nu-
merical model that is able to resolve sediment 
transport over ripples and ripple migration alto-
gether in a Eulerian two-phase modeling frame-
work, called SedFoam. With a two-equation k-
epsilon closure, interphase drag and particle 
stresses, the model can resolve full profiles of 
sediment concentration and particle/fluid veloci-
ties. Particularly, a careful consideration of par-
ticle stresses in the high concentration of fluid-
solid transition is essential to the resulting ripple 
steepness and migration speed.  

2 GOVERNING EQUATIONS AND NU-

MERICAL MODEL 

The two-phase model sedFoam (Chauchat et 
al. 2017) (https://github.com/SedFoam/sedfoam) 
is used to simulate the formation and evolution 
of ripples in oscillatory flows using the Reyn-
olds-averaged k-𝜀 turbulence model.  

  In the Eulerian two-phase flow formalism, 
coupled mass and momentum conservation equa-
tions for the fluid and the solid phases are solved. 
The mass conservation for the fluid and the solid 
phase are given by 

( )
+

( )
= 0                           (1) 

+ = 0                                       (2) 

respectively with 𝑥 the position vector, 𝑖 =
1,2,3 representing the streamwise, vertical and 
spanwise components, 𝜙 the filtered sediment 
concentration and 𝑢  and 𝑢  the fluid and solid 
Favre filtered velocities. 

  The fluid and solid momentum conservation 
equation are written as 

( )
+

( )
=

−(1 − 𝜙) + 𝑇

−𝐼 + 𝜌 (1 − 𝜙)𝑔 + (1 − 𝜙)𝑓

                    (3) 
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+ = −𝜙 −

𝑇 + 𝐼 + 𝜌 𝜙𝑔 + 𝜙𝑓
                 (4) 

with 𝜌 and 𝜌 the fluid and solid densities and 
𝑃 and 𝑃  the fluid ans solid phase pressures. The 
effective fluid and solid stress ten-
sors 𝑇 and 𝑇 are given by 

𝑇 = 𝜌 (1 − 𝜙)𝜈 + − 𝛿    (5) 

𝑇 = 𝜌 𝜙𝜈 + − 𝛿           (6) 

where 𝜈  and 𝜈  are the fluid and solid phases 
viscosities, 𝑔 is the acceleration of gravity and 
𝑓  a volume force driving the flow. 

The momentum exchange term between the 
two phases 𝐼 is modelled using the semi-empiri-
cal drag law from Ding and Gidaspow (1990). 
The interested reader is referred to Chauchat et 
al. (2017) for more details about the model and 
the closures. 

3 RESULTS AND DISCUSSION 

Figure 1 shows the typical domain character-
istics and boundary conditions. At the top do-
main boundary, a free-slip (i.e., Neumann) 
boundary condition is used for both the fluid and 
sediment field quantities. At the bottom bound-
ary, a no-slip boundary is used for the velocities 
of both phases while a zero-gradient boundary is 
used for the other quantities. For the pressure 
field, a fixed zero value is specified at the top 

boundary, and at the bottom boundary of the do-
main, a zero gradient condition is imposed. 
Periodic boundary conditions are specified at the 
two lateral boundaries to minimize computa-
tional domain length and Lx i is set to be the 
same as the measured equilibrium ripple re-
ported by van der Werf et al. (2007). The domain 
length specified such that it includes n = 3 rip-
ples. For initial ripple height 𝜂i, we specify a 
much larger value than that measured ripple 
height. The domain height is set to be Lz = 0.5 
m in all the simulations.  

The oscillatory flow is driven by a prescribed 
horizontal pressure gradient which generates a 
free-stream velocity time series following the 
Stokes second-order wave. 
In table 1, four cases are presented correspond-
ing to different wave forcing conditions and the 
same sand diameter (d50=440 𝜇m, s=𝜌s/ 𝜌f 

=2.65). The ripple profile at different wave 
cycle is shown in figure 2 a for case 1, the rip-
ple height slightly reduces and the ripple mi-
grates onshore. By tracking the position of 
the ripples crest it is possible to deduce the 
migration speed of the ripple which is shown 
in figure 2b for case 1 and 2. The numerical 
model predicts no migration for the symmet-
ric wave case 2 (as expected) and a migration 
rate of 14-15 mm/min for case 1 which is 
very comparable with the measured value of 
18 mm/min by van der Werf et al. (2007). 
This first result validate the two-phase flow 
approach for simulation of ripple migration 
by asymmetric waves. More details can be 
found in Salimi-Tarazouj et al. (2021a). 
  

Figure 1: Schematic plot of the model domain and initial ripple bed profile 
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The morphodynamical evolution of the 
ripple is the result of the small imbalance 
in the sediment fluxes during a wave pe-
riod. Figure 3 and 4 show the period-aver-
aged dimensionless vorticity field (𝛺/𝜔) 
and the dimensionless sediment flux (𝜓).  

 
Figure 2: (a) Ripple profile for the middle ripple in 
Case 1 at different wave cycle. (b) Ripple migration 
rate as a function of the number of wave's cycle for the 
middle ripple in Case 1 (red circles) and Case 2 (blue 
triangles). 

 

 
Figure 3: (a) Wave-period-averaged normalized vor-
ticity (color-bar) for Case 1. Panel (b) shows the cor-
responding wave-period-averaged normalized sedi-
ment horizontal flux. 

 
Figure 4: idem as figure 3 for case 2. 

While the vorticity field and the sediment 
flux are symmetric in case 2 (figure 4, sinus-
oidal wave) a slight asymmetry is observed in 
case 1 (figure 3, 2nd order Stokes wave) 
which shows a larger primary vortex at the 
onshore side of the ripple (negative/clock-
wise vorticity), reflecting the stronger on-
shore flow driven by onshore velocity-
skewed wave motion. This asymmetry gener-
ates an intense, offshore directed flow close 
to the onshore side of the ripple's surface and 
ripple crest which lead to a larger onshore 
transport via near-bed load. This the key 
mechanism by which the ripple migrates. 
In figure 5, the space-time diagram of the bed 
elevation for case 3 and 4 are shown. This fig-
ure illustrates the model’s capability to simu-
late the reduction and increase of ripple 
length and height due to two scenarios. The 
simulation is initialized with three orbital rip-
ples in the domain resulted from a 5 sec wave 
of orbital velocity 0.48 m/s (case 2). In the 
first scenario (Figure 5a), we reduce the pe-
riod to 3 sec and hence the orbital length is 
also reduced. This causes three large ripples 
to first split and then merge into 6 smaller rip-
ples. In the second scenario, we increase the 
orbital velocity to 0.8 m/s and three large or-
bital ripples evolve into four smaller sub-or-
bital ripples via merging and sliding (Figure 
5b). The interested reader is referred to 

Table 1: Parameters for numerical configurations  

Case 
#  

Waves 
(order) 

T 
(s) 

Um 

(m/s) 
𝜆e 

(m) 
𝜂e/ 𝜆e 

(-) 

1 2nd 5 0.54 0.41 0.19 

2 1st 5 0.48 0.46 0.17 

3 1st 3 0.48 0.23 0.17 

4 1st 3 0.8 0.345 0.13 
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Salimi-Tarazouj et al. (2021b) for more de-
tails about the effect of wave period on the 
ripple characteristics.  

4 CONCLUSION 

In this contribution we demonstrated the 
capabilities of the two-phase flow modeling 
approach to simulate the evolution and mi-
gration of ripples generated by an oscillatory 
flow. The model has been validated using ex-
perimental data and through a series of nu-
merical experiments, the ripple’s response to 
a step-change in the wave forcing has been 
studied. The model is capable of simulating 
“splitting”, “sliding”, “merging”, and “pro-
truding” as the ripples evolve to a new equi-
librium state.  

The model can also simulate the transition 
to sheet flow in energetic wave conditions 
and ripple reformation from a nearly flat bed 
condition. Simulation results reveal that the 
equilibrium state is such that the “primary” 
vortices reach half of the ripple length. Fur-
thermore, an analysis of the suspended load 
and near-bed load ratio in the equilibrium 
state indicates that in the orbital ripple re-
gime, the near-bed load is dominant while the 
suspended load is conducive to the ripple de-
caying regime (suborbital ripples) and sheet 
flow condition.  
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1 INTRODUCTION 

We are interested in pattern formation 
associated with a fluid flow over a solid bed, 
when mass transfer has a thermodynamic 
origin with melting, sublimation or 
dissolution of the bed. Figure 1 shows a 
typical example of scallops forming in 
limestone, in a river bed. The flow is 
influenced by the bed elevation and, in turn, 
erosion or transport induced by the flow 
makes the solid surface evolve. This 
feedback loop can lead to an unstable 
situation, where bed perturbations are 
amplified. Several linear stability analyses 
have been performed for these 
dissolution/melting problems, in order to 
compute the growth rate of a perturbation of 
given wavenumber � and determine the most 
unstable mode (Hanratty, 1981). In this 
presentation, we show that taking into 
account the bed roughness in the 
hydrodynamic description is of key 
importance as the dissolution instability is 
found to disappear when the bed becomes 
rough. Section 2 briefly summarizes the 
hydrodynamic model. Section 3 presents the 
stability analysis. Section 4 shows the main 
results and concludes. More details can be 
found in Claudin et al. (2017). 

 
Figure 1. Centimeter-scale scallops in limestone on 
Ardèche river (France). 

 

2 HYDRODYNAMIC MODEL 

We consider a flow in the horizontal �-
direction. The axis � is vertical. We use 
RANS equations to solve for the velocity �� 
and pressure � fields. The stress tensor ��� is 
related to the strain rate 	
�� = ���� + ���� by 
means of a turbulent closure that involves a 
mixing length ℓ. In order to account for both 
smooth and rough regimes, we adopt here a 
van Driest-like expression for it: 

 

ℓ = �(� + ��)  × �1 − exp �− (��� )(!"#/%)&/'

(ℛ*
+,  
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emerges is associated with an anomaly at the transition from a laminar to a turbulent hydrodynamic 
response with respect to the bed elevation. This anomaly, and therefore the instability, disappears when 
the bed becomes hydrodynamically rough. 
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Figure 2. Basal shear stress coefficients - (a) and ℬ 
(b) computed by the model as functions of �//�∗. The 
different colors code for the value of the bed roughness 
Reynolds number ℛ  (legend). The laminar–turbulent 
transition (around �//�∗ ≃ 1034) gradually 
disappears when ℛ increases. 

 
 
In this expression, � ≃ 0.4 is the von 

Kármán constant, � is the distance to the bed, 
� is the sand equivalent bed roughness size, 
/ is the kinematic viscosity of the fluid, 7 is 
its mass density. ℛ8 is the van Driest 
transitional Reynolds number, equal to ℛ8

9 ≃
25 in the homogeneous case of a flat bed. The 
exponential term suppresses turbulent mixing 
within the viscous sub-layer, close enough to 
the bed. The dimensionless numbers � and < 
are calibrated with measurements of velocity 
profiles over varied rough walls (see Claudin 
et al. (2017) and refs therein). 
 

Following Hanratty (1981), ℛ8 cannot be 
taken as a constant, but instead lags behind 
the pressure gradient by a space lag on the 
order of //�∗ that is associated with a 
thickening of the boundary layer. We then 
write for ℛ8 the spatial relaxation equation 

= /
�∗

�>ℛ8 = ? /ℛ8
9

7�∗4
�>(�>> − �)

− (ℛ8 − ℛ8
9)                     (2) 

where the constants = and ? have been 
calibrated by Charru et al. (2013) on 
experimental data (Zilker et al., 1977; 
Frederick et al., 1988). 

 
These data report measurements of the 

basal shear stress when the flow is perturbed 
by a sinusoidal bed @(�) = AB�C> (NB: we 
use complex notations for compactness, real 
parts are understood). At the linear order in 
�A, the shear stress is also modulated and 
takes the generic form �>� = 7�∗DE1 +
�AB�C>F8G. The mode function F8 depends on 
the dimensionless height ��. We define the 
two coefficients - and ℬ by F8(0) = - +
Hℬ. They encode the in-phase and in-
quadrature stress linear response to the bed 
perturbation. They are computed by the 
hydrodynamic model, and their dependence 
on �//�∗ if displayed in Fig. 2 for various 
values of ℛ = ��∗//. In the smooth limit 
(small ℛ ), they show a marked transition 
between the turbulent regime associated with 
small wavenumbers �//�∗ < 103J and the 
laminar regime, typically for �//�∗ > 103D. 
This `anomaly' at the laminar-turbulent 
transition, around �//�∗ ≃ 1034, 
experimentally evidenced by Hanratty and 
coworkers, plays as crucial role in the 
dissolution instability. It also shows up for 
the basal pressure response (Claudin et al., 
2021), as well as for the effective topography 
-induced hydrodynamic roughness (Jia et al., 
2023). Importantly, it disappears in the rough 
regime (Fourrière et al., 2010), for large 
enough ℛ ≳ 100. 
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3 LINEAR STABILITY ANALYSIS 

We wish now to describe a passive scalar 
M, e.g. the concentration of a chemical 
species or the temperature, which is 
transported by the flow. We model its 
dynamics by a simple advection–diffusion 
equation 
�8M + NO⃗ ∙ R⃗ = 0                                         (3) 
where the flux R⃗ is the sum of a convective 
and a diffusive term R⃗ = M�O⃗ − S∇OO⃗ M. Here, 
we take a diffusion coefficient S proportional 
to the turbulent viscosity and write 

S = U
VW

+ ℓ'X

V*

                                              (4) 

where 	
  is the modulus of the strain rate 
tensor. YU (resp. Y8) is the viscous (resp. 
turbulent) Schmidt number (or Prandtl 
numbers for temperature), here taken as 
constants. 

To perform the linear stability analysis of 
these equations, we write the bed profile as 
@(�, [) = AB(\��])8��C>                            (5) 
where ̂ (�) is the growth rate and _(�) is the 
angular frequency of the bed 
pattern along �. The phase propagation speed 
is therefore −_/�. The equations of the 
model are linearized with respect to �A and 
can be solved with suitable boundary 
conditions. All components of their solution 
are written in the form of a correction to the 
base state (the flat case �A = 0, 
homogeneous in �), proportional to �@ times 
a mode function. The evolution equation of 
the bed can be written as 
�8@ =  R9 − R�(@)                                    (6) 
where R9 = `(M�a8 − M9) is the scalar flux 
in the base state. The corresponding 
dispersion relation reads 
^ + H_ =  R9�b(0)                                  (7) 
where b is the mode function associated with 
the flux correction. This function is related to 
the hydrodynamic fields (see Claudin et al. 
2017 for details). 

  

 

Figure 3. Dimensionless growth rate as a function of 
�//�∗ in the limit of small ̀ /�∗ and for Y( = 104,  
ℛ = 10. Solid lines represent positive values. For 
negative values, −^ is plotted (dotted lines). The 
grey region corresponds to the unstable (^ > 0) range 
of wavenumbers. 
 
 

 
Figure 4. Stability diagram computed in the limit of 
small `/�∗ and for Y( = 104. Solid line: marginal 
stability curve (̂ = 0). Grey: unstable zone (^ > 0). 
Dotted line: location of the most unstable modes. 
 

4 RESULTS AND CONCLUSIONS 

The growth rate from (7) is displayed in 
Fig. 3, in the smooth case (small ℛ ). We see 
a range of unstable wavenumbers with a 
positive growth rate, in which ̂ reaches a 
maximum value ̂c at �c. As shown in Fig. 
4, a key result is that the unstable band 
disappears above a critical value ℛd of the 
roughness Reynolds number. This instability 
is governed by the laminar-turbulent 
transition, and is thus controlled by the 
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viscous length. An immediate robust result is 
that �c ∝ �∗/f (with a prefactor on the order 
of 1034), a scaling law that is in good 
agreement with observations on various 
systems (Ashton & Kennedy, 1972; 
Blumberg & Curl, 1974; Curl, 1974; Thomas, 
1979), including sublimation patterns on 
Mars (Bordiec et al., 2020). 

One can understand the instability 
mechanism as follows. The erosion of the bed 
is driven by the mass flux itself controlled by 
the concentration gradient and the coefficient 
of diffusion. The concentration profile, 
enforced by the base state, is non-
homogeneous, decreasing away from the 
surface. The crests of a modulated bed profile 
come closer to regions of lower 
concentration, enhancing the gradient with 
respect to the surface where M is imposed. 
For a constant S, this peak effect increases 
the flux and thus the erosion at the crests, and 
this stabilising situation is what happens at 
large �f/�∗, when the wavelength is much 
smaller than the viscous sublayer. When 
turbulence is dominant, S is not constant any 
more, but is controlled by turbulent mixing. 
At small �f/�∗, turbulence is enhanced 
slightly upstream of the crests, and hence 
there is stabilizing erosion again. For 
wavenumbers in the intermediate range 
corresponding to the laminar–turbulent 
transition, however, turbulence is shifted 
downstream by means of the adverse pressure 
gradient (Eq. 2), enhancing mixing and thus 
erosion in the troughs, which is a 
destabilizing (amplifying) situation. 

Further experimental studies, such as that 
of Bushuk et al. (2019), are needed to 
investigate the emergence and development 
of this instability in more detail, and in 
particular to follow the evolution of the bed 
roughness over time. 
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