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Abstract 
Existing model studies on sandwave dynamics point to the importance of turbulence, and particularly its temporal 
and spatial structure. We present an idealized model of sandwave formation, in which turbulence is accounted for 
by adopting a time- and depth-dependent eddy viscosity. Following linear stability analysis, the basic and 
perturbed flow solutions are obtained using a spectral method involving eigenfunctions that simplify the vertical 
stress term. First model results show favourable convergence properties of the basic state, expressing the 
generation of higher harmonics due to the time-dependent eddy viscosity. The perturbed state, which requires 
further investigation in detail, reveals large flow gradients close to  the bed.   
 

1. INTRODUCTION 

1.1. Tidal sandwaves 
Tidal sandwaves are dynamic bed forms observed 
in tide-dominated shallow seas, characterized by 
wavelengths of hundreds of meters, heights of 
several meters and migration rates up to tens of 
meters per year. Sandwaves may pose a hazard to 
navigation and the safety of pipelines and wind 
farms. Understanding sandwave dynamics thus 
helps improving/optimizing the design and 
maintenance of pipelines and wind farms, the 
dredging operations in approach channels and the 
survey strategies for nautical charting. 
 
1.2. Sandwave modelling 
Tidal sandwaves have been explained as an 
inherent instability of a flat seabed subject to tidal 
motion (Hulscher 1996). Wave-like bottom 
undulations perturb the water motion such that 
vertical residual circulation cells are formed with a 
near-bed flow directed from trough to crest. If 
sufficiently strong to overcome gravity, this flow 

transports sediment from trough to crest, thus 
causing the undulation to grow. This formation 
process was described by a linear stability analysis, 
which produces growth rates as a function of the 
topographic wave number k and orientation with 
respect to the tidal current. Instability is expressed 
by the occurrence of positive growth rates, the 
maximum of the growth curve defines the so-
called fastest growing mode. Hulscher (1996) 
considered symmetric tidal forcing, a schematized 
turbulence model (constant and uniform vertical 
eddy viscosity with partial slip at the bed) and bed 
load transport. Later on, this model was extended 
to explain sandwave migration due to residual 
currents and overtides in the forcing (Németh et al. 
2002, Besio et al. 2004), role of higher harmonics 
in the perturbed flow (Gerkema 2000, Besio et al. 
2003a) and the representation of turbulence and 
suspended load transport (Blondeaux  & Vittori 
2005ab). Although the characteristics of the fastest 
growing mode generally agree with observations 
from e.g. the North Sea, these linear models suffer 
from two shortcomings: (i) their validity is 
restricted to small amplitudes and (ii ) they fail to 
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suppress the growth of ‘ultra-long’ sandwaves 
(near k = 0). 
The first shortcoming, actually a restriction of 
linear stability analyses in general, has inspired the 
development of nonlinear models. (e.g., Németh et 
al. 2007, Sterlini et al. 2009). These models 
describe sandwave evolution towards equilibrium, 
but the modelled equilibrium heights exceed those 
observed in the field. Furthermore, simulations of 
patterns with multiple sandwaves (on a spatially 
periodic domain) ultimately develop into a single 
feature with a wavelength equal to the length of 
the computational domain. This is physically 
unrealistic and probably related to the second 
shortcoming, i.e. the failure of suppressing ultra-
long sandwaves.  
 
1.3. Turbulence representation 
Resolving this problem requires a closer 
investigation of the representation of turbulence 
and sediment transport. Komarova & Hulscher 
(2000) showed that adopting a time-dependent 
eddy viscosity of a particular form helps to 
suppress the growth of very long sandwaves. They 
considered bed load transport and continued to use 
the schematized turbulence model with a uniform 
eddy viscosity and partial slip at the bed. Although 
computationally appealing (basic flow analytically 
available), it involves a slip parameter that is hard 
to quantify and an unknown thickness of the 
constant-stress layer tacitly excluded from the 
water column. Blondeaux & Vittori (2005ab) 
avoided these drawbacks by adopting Dean’s 
(1974) eddy viscosity profile combined with a no-
slip condition at the bed. They assumed a time-
independent eddy viscosity as their focus was on 
the inclusion of suspended load rather than the 
behaviour near k = 0 (which still showed positive 
growth rates). Recent numerical simulations of 
sand wave formation carried out with a k-epsilon 
model by Borsje et al. (2011) reveal both the 
depth- and time-dependency in the vertical eddy 
viscosity Av. The profiles are nearly parabolic, 
whereas the M4 component of Av is about half the 
residual component, with an almost identical 
parabolic vertical shape and a phase that is nearly 
constant over the water column. Borsje et al. 
(2011) found negative growth rates near k = 0, 
which was attributed to suspended load transport. 
Because of the different approaches, it is hard to 
interpret the conclusions from Komarova & 

Hulscher (2000), Blondeaux & Vittori (2005ab) 
and Borsje et al. (2011) in a unified manner. 
 
1.4. Goal 
The main goal of this study is to develop a new 
modelling framework that allows us to 
systematically investigate the implications of the 
(combined and separate) depth- and time-
dependencies of the eddy viscosity on sand wave 
formation. Since numerical simulations are not 
suitable for such a task (time-consuming and 
difficult to analyse), we adopt an idealized 
modelling approach following a linear stability 
analysis. Since incorporating a k-epsilon model is 
unfeasible, we seek a parameterization of the key 
features of the eddy viscosity as found in the 
numerical simulations above (Borsje et al. 2011). 
This structure, parabolic in the vertical and with a 
significant M4-component, is further supported by 
the literature on estuarine hydrodynamics 
(McGregor 1972, Ianniello 1977). Our 
parameterization of the eddy viscosity allows for a 
spectral solution method, expressing the flow 
solution as a superposition of analytically obtained 
vertical profiles. This provides a computationally 
attractive alternative to the finite difference 
schemes used in other studies mentioned above. 
The innovation of our study is therefore twofold: 
(i) the inclusion of time-dependency in a depth-
dependent vertical eddy viscosity representation in 
an idealized sandwave model, (ii ) the use of a 
spectral solution method regarding the vertical 
structure of the flow. 
 
2. MODEL FORMULATION 

2.1. Hydrodynamic conservation laws 
Consider tidal flow of angular frequency ω and 
typical depth-averaged flow velocity amplitude U 
in an offshore region of a shallow shelf sea, far 
away from coastal boundaries. The mean water 
depth H is of the order of tens of meters. Let u = 
(u,w) denote the flow velocity vector with 
components u and w in the (horizontal) x-direction 
and in the (vertical) z-direction, respectively. 
Ignoring rotation, we assume uniformity and zero 
flow in the y-direction. The free surface elevation 
is located at z = ζ around the still water level z = 0. 
The seabed is located at z = -H + η, where η(x) 
represents the topographic undulations. These 
undulations are characterized by a bed amplitude h 



Marine and River Dune Dynamics – MARID IV – 15 & 16 April 2013 - Bruges, Belgium 

 237 

that is small with respect to the water depth and a 
topographic length scale L = 2π/k of about 102-103 
m, i.e. well below the tidal wavelength. 
Next, we assume hydrostatic pressure (H«L) and 
adopt the eddy viscosity concept as turbulence 
closure. Conservation of momentum and mass is 
then expressed by the 2DV (two-dimensional 
vertical) shallow water equations: 
 
ut + u ux + w uz = -g ζx  

+ Ahuxx + [AvN(ž)b(ωt)uz]z, (1) 
 
ux + wz = 0.    (2) 
 
Here, subscripted coordinates denote derivatives, g 
is the gravitational acceleration. The horizontal 
kinematic eddy viscosity, with typical magnitude 
Ah (in m2 s-1), is assumed constant in time and 
space. Alternatively, the vertical kinematic eddy 
viscosity is written as the product of a dimensional 
reference value Av (in m2 s-1) and two 
dimensionless order one functions N(ž) and b(ωt), 
which separately account for the vertical and 
temporal variations. This representation allows us 
to impose the eddy viscosity as obtained with the 
recent numerical model results of sandwave 
formation (Borsje et al. 2011). 
 
2.2. Vertical eddy viscosity representation 
Following McGregor (1972) and Ianniello (1977), 
we propose a parabolic profile of the vertical eddy 
viscosity (Figure 1), given by 
 
N(ž) = 1 – [β(ž+δ)]2,    (3) 
 
with β = (1 - R)½/(1 - δ). Equation (3) is a function 
of a re-scaled vertical coordinate ž = z/(H - η), 
ranging from -1 at the bed to 0 at the free surface. 
As shown in figure 1, N attains a small value R (0 
< R < 1) at the bed (at ž = -1) and reaches a 
maximum of unity near mid-depth (at ž = -δ with 0 
< δ < 1). Positive N-values everywhere in the 
water column are warranted by requiring N(0) = 1 
- β2
δ

2 > 0, which is equivalent to the constraint δ
-1 

> 1+(1-R)½. Default values used throughout this 
study are R = 0.01 and δ = 0.5. Importantly, the 
dependency of ž on η(x) implies that, in the case of 
a non-horizontal bed, the viscosity also depends on 
the horizontal coordinate x. 

The temporal structure of the eddy viscosity is 
represented as a truncated Fourier series according 
to 
 
b(ωt) = Σp Bp exp(ipωt),   (4) 
 
with the summation ranging from p = -P to P (with 
truncation number P) and complex coefficients Bp, 
contained in a column vector B = (B-P,…,BP)

T and 
satisfying B-p = Bp

* because b(ωt) is real (an 
asterisk denoting complex conjugation).  
 
2.3. Boundary conditions and forcing 
Regarding boundary conditions, we require zero 
perpendicular flow and no stress at the free surface 
as well as no slip at the bed. This implies uz = w = 
0 at z = 0 and u = w = 0 at z = -H + η, where we 
have adopted a rigid-lid approach, by which the 
upper boundary of the computational domain is set 
at z = 0 (rather than z = ζ). 
Recalling that k is the topographic wave number, 
we consider a spatial domain of length L = 2π/k 
with spatially periodic boundary conditions. 
Finally, the problem is forced by a prescribed 
time-periodic pressure gradient. More precisely, 
the spatial average of the pressure gradient gζx in 
equation (1) is prescribed. We adopt parameter 
values that are typical for sand wave regions in the 
North Sea. The dimensional vertical eddy viscosity 
magnitude is calculated from Av = cdHU (Bowden 
et al. 1959), with drag coefficient cd = 2.5×10-3. 
 
2.4. Sediment transport and bed evolution 
Finally, the bed evolves as a result of the 
divergence of the bed load sediment flux, which is 
modelled as a simple power law of the bed shear 
stress, supplemented with a bed slope correction. 
Defining the volumetric bed shear stress according 
to 
 
τb = Av R b(ωt) uz  at z = -H + η,  (5) 
 
we thus write  
 
(1-εpor) ηt + [ α|τb|

γ (τb/|τb| - µ ηx) ]x = 0. (6) 
 
Here, εpor is the bed porosity (dimensionless). The 
term in square brackets is the bed load sediment 
flux, which contains three constants: a  
proportionality coefficient α (dimension m2-2γ s2γ-1), 
a dimensionless transport power γ ~ 3/2 and a 
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dimensionless (yet non-scaled) bed slope 
correction coefficient µ. 
 
2.5. Scaling and linear stability analysis 
Without reporting the details, we proceed by 
performing a scaling procedure. We thus 
reformulate our model in terms of dimensionless 
unknowns, and identify a set of dimensionless key 
parameters. Furthermore, it provides a justification 
of the so-called quasi-stationary approach, which 
allows us to consider the seabed fixed while 
solving the hydrodynamic problem. The seabed 
thus effectively evolves as a result of the tidally 
averaged divergence of the sediment flux. We 
therefore distinguish a ‘fast’ hydrodynamic time 
coordinate t (within tidal cycle) and a ‘slow’ 
morphodynamic time coordinate τ for the bed 
evolution (in the order of years). 
Following the principles of a linear stability 
analysis, we then consider the bed profile as a 
small perturbation of a horizontal bed, i.e. 
 
η = a(τ) cos kx ,    (7) 
 
with a time-dependent bed amplitude a(τ) that is 
small with respect to the water depth. Defining ε = 
ainit/H « 1, we now expand the solution in powers 
of ε. This is symbolically represented as 
 
Ψ = Ψ0 + ε Ψ1 + h.o.t.,   (8) 
 
where the vector Ψ contains (the dimensionless 
counterparts of) the flow velocity components, the 
free surface (gradient) and the sediment flux 
(higher order terms denoted by h.o.t.). Importantly, 
we must also expand the vertical structure of the 
eddy viscosity in powers of ε according to N = N0 + 
εN1+ h.o.t.. 
We subsequently solve for the basic state Ψ0 and 
the perturbed state Ψ1. In doing so, analogous to 
equation (4), we expand the temporal structure of 
the unknowns as a truncated Fourier series in time, 
where – for the flow components u and w – the 
associated complex coefficients are functions of 
the vertical coordinate z. The next step is to resolve 
the vertical structure of these quantities. 
 
2.6. Superposition of vertical profiles 
Essential and novel in our solution method is the 
fact that we express the horizontal flow velocity 
components as a superposition of vertical profiles 

for which the vertical stress term (the one in square 
brackets in equation (1)) simplifies considerably. 
These are: 
• A finite number of eigenfunctions ϕm(ž), with 

corresponding eigenvalue λm, which satisfy 
[N0ϕm,z]z + λmϕm= 0, as well as ϕm,z(0) = ϕm(-
1) = 0. These eigenfunctions, which form a 
complete set, can be expressed in terms of 
Legendre functions (e.g., Abramowitz & 
Stegun 1964; see Figure 2a). 

• A so-called residual flow’s shape function 
ϕres(ž), which satisfies [N0ϕres,z]z = 1 and 
ϕres,z(0) = ϕres(-1) = 0. 

• A constant function ϕbed(ž) = 1, which 
(trivially) satisfies [N0ϕbed,z]z = 0 and ϕbed,z(0) 
= ϕbed(-1) = 0. 

 
The inclusion of fres and fbed helps to improve the 
convergence properties of our method. With the 
aid of equation (2), the vertical flow velocity 
components are expressed as a superposition of the 
vertical integrals of the above profiles, denoted by  
Φm, Φres and Φbed (see Figure 2b). This implies that 
our flow solution exactly satisfies continuity in the 
entire water column. For sake of brevity, further 
details of the solution method to find Ψ0 and Ψ1 are 
omitted. 
 
3. RESULTS 

Simulations with our model indicate spectral 
convergence of our solution regarding the basic 
state, i.e. the flow over the flat bed. They also 
show the generation of higher harmonics due to the 
time-dependency in the vertical eddy viscosity. For 
example, if forced by an M2 pressure gradient, the 
time-varying eddy viscosity generates higher 
harmonics in the flow solution of the basic state. In 
classical stability models, this only occurs in the 
perturbed state as the result of the advective 
interaction (i.e., the terms u0 u1,x and w1 u0,z in the 
first order momentum equations) between the basic 
and the perturbed flow.  
First results from the perturbed state, and hence the 
growth rates, which have not yet been investigated 
in detail for small R-values, display large flow 
gradients near the bed. 
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4. CONCLUSIONS 

We have presented a new modelling framework 
that allows us to systematically investigate the 
implications of the (combined and separate) depth- 
and time-dependencies of the eddy viscosity on 
sand wave formation. Key features are the spectral 
method, that allows us to express the flow solution 
as a superposition of eigenfunctions and other 
vertical profiles.  
First simulations with our model indicate 
favourable convergence properties (regarding basic 
state). The results from the perturbed state, and 
hence the growth rates, have not yet been 
investigated in detail. 
Our simulations further show that in the near-bed 
region (where the eddy viscosity becomes small), 
the vertical flow gradients of the perturbed flow 
become very large. This is as expected, yet should 
be kept in mind when interpreting results from 
finite-difference numerical models with usually 
only a limited number of vertical grid points 
(‘sigma-layers’). Finally, future extensions of our 
model may include the incorporation of suspended 
load, which is likely to require a different set of 
eigenfunctions. 
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Figure 1. Parabolic viscosity profile N(ž) according to equation (3): (a) general definition sketch showing the bottom 
value R and a maximum of unity at ž = -δ, (b) default case with R = 0.01 and δ = 0.5. 
 

 
Figure 2. Overview of the functions used in the horizontal and vertical flow solution, respectively: (a) eigenfunctions 
ϕm (thin lines, m = 1,2,3,4), residual flow's shape function ϕres (thick line) and constant function ϕbed; (b) integrated 
eigenfunctions Φm (thin lines, m = 1,2,3,4) and integrated shape functions , Φres (thick solid line) and Φbed (thick 
dashed line). Parameter values R = 0.01, δ = 0.5. 

 

 

 


