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Abstract 
Sediment transport is studied by means of two phase numerical simulations based on a discrete element method for 
particles coupled to a continuum Reynolds averaged description of hydrodynamics.. We analyse the mechanisms at 
the grain scale in the case of bed load, in order to give support to empirical transport laws. The vertical velocities 
of the grains are small and sediment transport occurs in a thin layer at the surface of the static bed. Steady, or 
`saturated' transport is reached when the fluid borne shear stress at the interface between the mobile grains and the 
static grains is reduced to its threshold value. The number of grains transported per unit surface is therefore limited 
by the flux of horizontal momentum towards the surface. However, the fluid velocity in the transport layer remains 
almost undisturbed so that the mean grain velocity scales with the fluid shear velocity u* , eventually leading to a 
sediment flux scaling with the third power of u* . The influence of the grain to fluid density ratio is systematically 
studied to reveal the transition between sub-aqueous bedload and aeolian saltation, for which the transport law has 
a different scaling with u* . Based on the mechanisms identified in the steady case, we discuss the transient of 
saturation of sediment transport and in particular the saturation time and length. Finally, we investigate the 
exchange of particles between the mobile and static phases and we determine the exchange time of particles. 

1. INTRODUCTION 

Despite a wide literature, some fundamental 
aspects of sediment transport in turbulent flows are 
still only partly understood. In particular, 
derivations of transport laws, relating the sediment 
flux to the flow velocity, have a strong empirical 
or semi-empirical basis (see e.g. among many 
others Meyer-Peter and Muller (1948), Ribberink 
(1998), Camemen and Larson (2005), Greeley et 
al. (1996), Iversen and Rasmussen (1999), Kok 
and Renno (2009) and references therein), thus 
lacking more physics-related inputs. Also, the 
dynamical mechanisms limiting sediment 
transport, in particular the role of the bed disorder 
(Charru, 2006) and turbulent fluctuations 
(Marchioli et al., 2006; Baas, 2008; Le Louvetel-
Poilly et al., 2009), remain matter of discussion. 
 
Here we investigate the properties of steady 
homogeneous sediment transport using a novel 
numerical description of particle-laden flows, 
using two-phase numerical simulations based on a 
discrete element method for particles coupled to a 
continuum Reynolds averaged description of 
hydrodynamics. In particular, we examine the 

transition from bed-load to saltation by studying 
the influence of the grain to fluid density ratio 
ρ p /ρ f . A similar approach has recently been used 

to study the onset of aeolian saltation (Carneiro et 
al., 2011). The present paper summarizes the 
MARID presentation. More details on this work, 
as well as a more developed bibliography on the 
subject, can be found in Durán et al. (2012). 
 

2. THE MODEL 

The idea is to use a continuum description of 
hydrodynamics, averaged at a scale larger than the 
grain size. This means that the feedback of the 
particles on the flow is treated in the mean field 
manner. This method allows us to perform very 
long numerical simulations (typically 

1000 d /g ), using a (quasi) 2D large spatial 
domain (typically 15000 spherical grains in a xyz 
box of respective dimensions 
1000d×1d×1000d), while keeping the 
complexity of the granular phase. Periodic 
boundary conditions are used in the x (flow) 
direction. We will now detail the different 
ingredients of the model - see table 1 for notations. 
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Table 1: Units used in the model, expressed in terms of 
the grain density (ρ p), the fluid density (ρ f ), the 

gravity (g) and the mean grain diameter (d). 

 
 
2.1 Forces on particles 
 The grains have a spherical shape and are 
described by their position vector   

r 
r , velocity   

r 
u  

and angular velocity   
r ω . A given grain labelled p 

inside a fluid obeys the equations of motion, 

  

m
d
r 
u p

dt
= m

r 
g +

r 
f p,q +

r 
f fluid

p

q

∑

I
d
r ω p
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f p,q

q
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                             (1) 

where   
r 
g  is the gravity acceleration, I = md2 /10 

is the moment of inertia of a sphere,   

r 
f p,q is the  

contact force with grain q,   
r 
n p,q is the contact 

direction, and 
  

r 
f fluid

p  encodes forces of 

hydrodynamical origin. 
 
We model the contact forces following a standard 
approach for the modeling of contact forces in MD 
codes (see e.g. DEM book (2011) and references 
therein), where normal and tangential components 
are described by spring dash-pot elements. A 
microscopic friction coefficient is also introduced. 
For simplicity we assume that the net 

hydrodynamical force (
  

r 
f fluid

p ) acting on a grain p 

due to the presence of the fluid is dominated by the 

drag and Archimedes forces, 
  

r 
f drag

p  and   
r 
f Arch

p , 

respectively. The lift force, lubrication forces and 

the corrections to the drag force (Basset, added-
mass, Magnus, etc.) are neglected. 
 
Drag force — We hypothesize here that the drag 
force exerted by a homogeneous fluid on a moving 
grain only depends on the difference between the 
grain velocity   

r 
u p(x,z)  and the fluid velocity   

r 
u (z)  

at grain's height z. Introducing the particle 
Reynolds number Ru based on this fluid-particle 

velocity difference   Ru =|
r 
u − r 

u p |d /ν , the drag 
force can be written under the form 

  

r 
f drag

p = π
8

ρ f d
2Cd (Ru) |

r 
u −

r 
u p | (

r 
u −

r 
u p)           (2) 

where Cd (Ru)  is the drag coefficient. We use the 
following convenient phenomenological 
approximation (Ferguson and Church, 2004): 

Cd (Ru) = [ Cd
∞ + Ru

c / Ru ]2, where Cd
∞ ≈ 0.5, is 

the drag coefficient of the grain in the turbulent 
limit ( Ru → ∞), and Ru

c ≈ 24 is the transitional 
particle Reynolds number above which the drag 
coefficient becomes almost constant. 
 
Archimedes force — This force results from the 
stress which would have been exerted on the grain, 
if the grain had been a fluid. Thus, 

  

r 
f Arch

p = π
6

d3divσ f                                               (3) 

where πd3 /6  is the grain volume and 
σ ij

f = −p fδij + τ ij
f  is the undisturbed fluid stress 

tensor (written in terms of the pressure p f  and the 

shear stress tensor τ ij
f ). In first approximation, the 

stress is evaluated at the center of the grain. 
 
2.2 Hydrodynamics and coupling 
In the presence of particles occupying a volume 
fraction φ , the hydrodynamics is described by the 
two-phase flow Reynolds averaged Navier-Stokes 
equations: 
ρ f (1−φ)Dtui = −∂ i p

f + ρ f (1−φ)gi +∂ jτ ij
f − Fi  

                                                                             (4) 
where Dtui = ∂tui + u j∂ jui  denote the fluid inertia. 

τ ij
f  is the total shear stress tensor resulting both 

from viscous diffusion of momentum (viscous 
stress) and transport of momentum by turbulent 
fluctuations (Reynolds stress).   

r 
F  is the body force 

exerted by the grains on the fluid. In the steady and 
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homogeneous case investigated here, These RANS 
equations simplify into 
∂zp f = −ρ f g                                                       (5) 

∂zτ
f = Fx                                                             (6) 

where we note τ f = τ xz
f  the fluid shear stress, and 

later on u = ux for the fluid horizontal velocity. 
 
The coupling term   

r 
F  can then be obtained by 

averaging the hydrodynamical force 
  

r 
f fluid

p  acting 

on all the grains moving around altitude z, in a 
horizontal layer of area A and thickness dz: 

  

r 
F (z) = 1

Adz

v 
f fluid

p

p∈{ z;z+dz}

∑                                    (7) 

We take for A the total horizontal extent of the 
domain (i.e. 1000d×1d). The symbols .  denote 
ensemble averaging. Here, we retain its x-
component only, which simplifies into 

Fx = φ
1−φ

fdrag,x
p

p∈{ z;z+dz}

∑ /
π
6

d3

p∈{ z;z+dz}

∑             (8) 

where the grain's volume fraction φ  is defined as 

φ(z) = 1
Adz

π
6

d3

p∈{ z;z+dz}

∑                                    (9) 

Eq 6 integrates as τ f (z) = ρ f u*
2 − τ p(z) , where 

we have introduced the shear velocity u* , defined 
by the undisturbed (grain free) wall shear stress, 
and the grain borne shear stress τ p , computed 
from the integration of (8) over sufficient vertical 
extension to count all moving grains. 
 
In order to relate the fluid borne shear stress to the 
average fluid velocity field, we adopt a Prandtl-
like turbulent closure. Introducing the turbulent 
mixing length   l , we write 

  
τ f = ρ f (ν + l

2 |∂zu |)∂zu                                 (10) 

ν  is the viscosity (a constant independent of the 
volume fraction). As for the mixing length   l , we 
know it should vanish below some critical 
Reynolds number Rc and should be equal to the 
distance to the surface z, far above the transport 
layer. To avoid the need of a somewhat arbitrary 
definition of an interface between he static and 
mobile zones of the bed, we propose the 
differential equation 

ν
  

∂zl = κ 1− e
1
Rc

ul
ν

 
  

 
  

 

 
 
 

 

 
 
 
                                      (11) 

where κ ≈ 0.4 is von Karman's constant. In the 
case of a turbulent flow over a smooth and flat 
surface (no grains), we recover the prediction 
computed with the phenomenological expression 
for the mixing length suggested by van Driest 
(Pope, 2000), which reproduces well classical 
experimental results. Comparison to measurements 
determines the dimensionless parameter Rc ≈ 7. 
 
Starting integration deep enough in the static bed 
to be in the asymptotic limit that can be analyticaly 
derived, we obtain the different hydrodynamical 
fields. They are displayed in Fig. 1, in the case of 
sub-aqueous transport (ρ p /ρ f = 2). 

 
 
 
 
  

 
Figure 1. Vertical profiles of the rescaled volume 

fraction φ /φb, flow velocity u+ = u /u* , mixing 

length   l
+ = l /d , fluid borne shear stress 

τ f + = τ f /(ρ f u*
2), viscous shear stress 

τν
f + = ν∂zu /u*

2 and turbulent shear stress 

  
τ t

f + = (l∂zu)2 /u*
2  (by definition τ f + = τν

f + + τ t
f + ). 

The reference height z= 0 is set at the altitude such 
that φ = φb /2. 
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3. SEDIMENT FLUX 

Steady and homogeneous sediment transport is 
quantified by the volumetric saturated flux qsat, 
i.e. the volume of the particles (at the bed density) 
crossing a vertical surface of unit transverse size 
per unit time. It has the dimension of a squared 
length per unit time. In the simulations, we 
compute it as 

qsat = 1

Aφb

π
6

d3 upp
∑                                      (12) 

A key issue is the dependence of qsat on the shear 
velocity or, equivalently, its dimensionless 
counterpart the Shields number Θ, defined by 

Θ =
ρ f u*

2

(ρp − ρ f )gd
                                              (13) 

which encodes the strength of the flow. 
 

 
Figure 2. Rescaled saturated flux versus Θ3/2 for water 
(a) and Θ for air (b). Full lines are the predictions 
given in the text. 

We show in Fig. 2 the saturated flux in both cases 
(water and air). In agreement with experimental 
observations (e.g., Meyer-Peter and Muller, 1948; 
Ribberink, 1998; Lajeunesse et al., 2010; 
Rasmussen et al., 1996; Creyssels  et al., 1009), we 
find that qsat scales asymptotically as Θ (or u*

2) 

for saltation, while  qsat scales as Θ3/2 (or u*
3) 

underwater. This figure also reveals the existence 
of a threshold shear velocity below which the flux 
vanishes. More precisely, we define the dynamical 
threshold Shield number Θd  from the 
extrapolation of the saturated flux curve to 0, 
which gives in our case Θd ≈ 0.12 for water 
( ρ p /ρ f = 2) and Θd ≈ 0.004 for air 

( ρp /ρ f = 2000), respectively. These values are 

consistent with experimental ones within a factor 
of 2. 
 
4. MECANISMS AT WORK IN 

THE TRANSPORT LAYER 

Bed load and saltation mainly differ by the vertical 
characteristics of the transport layer. At small 
density ratios the motion of grains is confined 
within a thin layer of few grain diameters. By 
contrast, for large density ratios, grains experience 
much higher trajectories: the transport layer is 
much wider and the flux density decreases 
exponentially with height with a characteristic size 
of the order of 50d , roughly independent of the 
shear velocity. The transport layer thickness is 
effectively determined by the hop length for 
ρ p /ρ f >10. Below this cross-over value, this 

thickness is given by the grain diameter d, as 
trajectories are almost horizontal. The transition 
from bed load to saltation therefore takes place 
when the vertical velocities of the particles are 
sufficiently large for these particles to escape the 
traps formed by the grains on the static bed. 
 
Another difference between bed load and saltation 
is how the grain's feedback on the flow is 
distributed within the steady state transport layer. 
Fig. 3 presents the vertical profiles of the fluid 
shear stress, rescaled by the dynamical threshold 
τ d (as defined by the saturated flux), for different 
shear velocities. For bed load (Fig. 3a), the 
different profiles of the fluid shear stress seems to 
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converge to the threshold value very close to the 
surface (z= 0).  In this transport layer, the fluid 
momentum decays over few grain sizes, in 
agreement with the vertical extension of the 
transport layer. By contrast, the fluid shear stress is 
below the threshold in the bed (z< 0) but some 
(weak) transport still occurs there, which is 
sustained not by the fluid itself but by the 
momentum transferred to the surface by grain 
collisions. 
 
This general picture is still valid for saltation (Fig. 
3b), however now the dynamical threshold is 
reached much farther from the surface (at 
z≈ 10d) which implies that the kinetic energy of 
impacting grains is large enough as to sustain the 
transport below this height. Above it, the transport 
is driven by the fluid and most of its momentum is 
dissipated in a much larger layer (comprising tens 
of grain diameters) again in agreement with the 
size of the saltation layer. Notice that although this 
surface sublayer below 10d  contains most of the 
grains, it still represents a small fraction of the 
overall transport layer. 
 
An important consequence of this distinction in the 
vertical structure of the grain's feedback is that 
although for bed load transport is equilibrated 
when the fluid shear stress reaches its dynamical 
threshold below the transport layer, this condition 
is not enough for saltation to equilibrate. For 
saltation there is a sub-layer where transport is not 
directly driven by the fluid and thus its 
equilibration is not dictated by the threshold. 
There, the properties of grain's collisions become 
relevant and the equilibrium is described by the 
conservation of the number of saltating grains i.e. 
when the number of grains entering the flow 
exactly balance those grains trapped by the bed. 
 
5. SCALING LAWS 

The saturated flux can then be decomposed as the 
product of the number n of transported grains per 
unit area by the mean grain horizontal velocity 
u p : qsat = nu pπd3 /(6φb) . In the numerical 

simulations, we compute n and u p  as 

n =
upp

∑( )2

A up
2

p
∑

      and      u p =
up

2

p
∑

upp
∑

             (14) 

These quantities are plotted as functions of the 
Schields number in Fig. 4. A scaling law 
n∝ Θ − Θd  is well verified over two decades, 
independently of ρ p /ρ f . By contrast, the density 

ratio has a strong effect of u p . The mean grain 
velocity is independent of Θ for large ρp /ρ f  

(aeolian case), whereas it varies linearly with the 
fluid shear velocity at low density ratio (sub-
aqueous case). Interestingly, u p  remains finite at 
the threshold, at a value independent of ρ p /ρ f . 

These behaviours are in agreement with 
experimental findings in the case of bedload 
(Lajeunesse et al., 2010). 

 
Figure 3. Vertical profiles of the fluid borne shear stress 
for different values of the shear velocity ratio (see 
legend), in water (a) and air (b). 
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Figure 4. (a) Number of transported grains per unit area 
and (b) mean velocity of these grains as functions of the 
Shields number for different values of the density ratio 
(see legend). 
 
We can derive these scaling laws from simple 
models. Following Bagnold's (1956) original ideas 
for the case of bedload, we write the grain born 
shear stress τ p as proportional to the moving grain 
density n and to the drag force fd  acting on a 
moving grain. As these grains are in steady 
motion, fd  balances a resistive force due granular 
friction, collisions with the bed, etc. These 
different dissipative mechanisms can be modeled 
as an overall effective friction force characterized 
by a friction coefficient µd , leading to 

fd = π /6µd (ρp − ρ f )gd3 . Saturation is reached 

when the fluid shear stress equals the transport 
threshold at the surface of the static bed, i.e. when 
τ p = ρ f u*

2 − τ d, with, by definition, 

τ d = Θd (ρp − ρ f )gd = ρ f ud
2. As consequence, the 

number of transported particles per unit area is 
solely determined by the excess shear stress:  
n = (ρ f u*

2 − τ d ) / fd. Assuming that the 

transported grains do not disturb the flow, the flow 
velocity around grains u must be proportional to 

the shear velocity, so that u /ud = Θ /Θd . One 

can then deduce: u p = ud( Θ /Θd − µd /µs ), 
where µs is a friction coefficient characterising the 
drag force necessary to set into motion a static 
grain. This predicts that the grain velocity does not 
vanish at the threshold, if friction is lowered 
during motion (µd < µs). The velocity at threshold 
can be interpreted as the velocity needed by a grain 
to be extracted from the bed and entrained by the 
flow. 
 
We can proceed in a similar manner for the aeolian 
saltation regime, following ideas initially proposed 
by Owen (1964) and Ungar and Haff (1987). The 
momentum balance τ p = ρ f u*

2 − τ d still holds, so 

that n has the same form as in the bed-load case, 
but with a different effective drag force fd , not 
related to friction anymore but to grain velocities. 
For saltation, steady transport also implies that the 
number of grains expelled from the bed into the 
flow exactly balances those trapped by the bed, i.e. 
a replacement capacity equal to one. Due to the 
grain feedback on the flow, in contrast with bed 
load, grains in the transport layer feel a flow 
independent of the wind strength (see Fig. 3). 
Thus, new moving grains come only from high 
energy bed collisions. Since the number of ejected 
grains is a function of the impact energy (or 
equivalently, of the impact velocity), the mean 
grain velocity u p  must be constant, independent 
of the shear velocity, scaling with ud . In fact, all 
particle surface velocities also scale with ud , so 
that fd  is a constant too, leading again to 
n∝ Θ − Θd . 
 
These scaling laws explain the different behaviours 
of qsat(Θ) in the sub-aqueous bedload and aeolian 
saltation cases, as shown in Fig. 2. 
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6. CONCLUSIONS 
The aim of this paper was to present a novel 
numerical approach for sediment transport based 
on a discrete element method for particles coupled 
to a continuum Reynolds averaged description of 
hydrodynamics. We have studied the effect of the 
grain to fluid density ratio and showed that we can 
reproduce both (sub-aqueous) bed load at ρp /ρ f  

close to unity, where transport occurs in a thin 
layer at the surface of the static bed, and (aeolian) 
saltation at large ρ p /ρ f , where the transport layer 

is wider and more dilute. Scaling laws for the 
density of moving grains, and for the average 
velocity of these grains, as functions of the 
Schields number are found in agreement with 
experiments, and support simple mechanisms at 
work in steady and homogeneous transport. 
 
Further work will be focused on transient 
situations, in order to study the time and length 
scales encoding the relaxation properties of out-of-
equilibrium transport. Also, it would be interesting 
to investigate the case of bimodal or more 
polydisperse grains (Houssais and Lajeunesse, 
2012) 
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