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1 INTRODUCTION 

The description and understanding of patterns in 
sand produced by the flow of air or water still chal-
lenges the community (Nishimori et al. 1993, 
Werner et al. 1993, Csahok et al. 2000, Betat et al. 
1999, Stegner et al. 1999, Hansen et al. 2001, An-
dersen et al. 2002). Despite diverse efforts including 
phenomenological and stochastic models (Nishimori 
et al. 1993, Werner et al. 1993) for ripples in air, 
analogic nonlinear modeling for sand vortex ripples 
(Hansen et al. 2001, Andersen et al. 2002), or con-
tinuum description based on the symmetries of the 
problem (Csahok et al. 2000), theoretical under-
standing has remained sparse. Here, we address the 
issue of the wavelength selection of sand ripples in a 
steady and laminar two-dimensional liquid flow.  A 
flat bed of sand subject to a steady fluid flow is gen-
erally unstable and gives rise to the so-called ripple 
patterns. In the first stages of the instability, the pat-
tern presents a well-defined periodicity, but later on, 
the ripple wavelength tends to increase in course of 
time. In air, this coarsening process clearly stops 
probably due to the existence of a strong coupling 
between the sand transport and the shape of the sand 
bed. In water, this is still a matter of debate and there 
is no clear experimental evidence to provide for a 
definite answer (Baas 1994, Rehberg et al. 2002, 
Loiseleux et al. 2004). Some experiments (Baas 
1994, Rehberg et al. 2002) show that the coarsening 

process stops while other ones (Loiseleux et al. 
2002) suggest that the coarsening proceeds indefi-
nitely.  We show in this paper that in the case of 
two-dimensional liquid flow of infinite depth (i.e., 
much larger than the dimension of the ripple pattern) 
the ripple wavelength increases indefinitely in course 
of time and no final state is selected. We therefore 
argue that coarsening may be interrupted only when 
the flow is three-dimensional [as in (Baas 1994)] or 
when it is shallow [as in (Rehberg et al. 2002)]. 

On the basis of the hydrodynamic equations and a 
semi-empirical sand transport law, we are able to de-
rive, in the case of a two-dimensional and steady liq-
uid flow of infinite depth, a closed equation for the 
dynamics of the sand bed profile. This equation is 
non local and nonlinear and reveals the existence of 
a coarsening process that never stops. To our knowl-
edge, this is the first time that such an equation is de-
rived in the context of sand bedforms. 
 

2 MODEL 

We consider a Newtonian and viscous fluid flowing 
over a sand bed. We focus on a Couette flow con-
figuration, i.e., the upper plate is pulled at an im-
posed and constant speed U0 in the x-direction (see 
Fig. 1). The equations of motion for the fluid read: 
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u=(u,w) is the fluid velocity in the plane (O,x,z), p 
the pressure, ρ the volumetric mass of the fluid, and 
η its dynamic viscosity (ν=η/ρ being the kinematic 
viscosity). These equations should be supplemented 
with conditions at the boundaries. At the sand bed 
surface [i.e., z=h(x,t)], - u ∂x h + w = ∂t h and  u+w 
∂x h =0 (the first condition expresses the continuity 
between the fluid velocity, perpendicular to the sand 
bed, and the normal displacement speed of the bed, 
and the second one is a consequence of the no-slip 
condition of the fluid at the sand bed surface). At the 
upper fluid surface (i.e., z=L), u=U0 and w=0. 
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Fig.1: Two-dimensional laminar shear flow over a deformed 
sand bed. 
 
The transport of sediment is induced by the bed 
shear stress (i.e., the flow shear stress calculated at 
the sand surface) but its precise evaluation is not a 
simple matter since it involves intricate and complex 
processes such as grain-grain and fluid-grain interac-
tions. Up to now, there is no sound theoretical de-
scription for the transport of particles. Therefore, we 
will use the semi-empirical law established by 
Meyer-Peter and Müller (Fredsoe et al. 1992): 
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Θ is the dimensionless bed shear stress, the so-called 
Shield parameter: Θ = σ/ ρg(s-1)d, where σ is the 
bed shear stress, s=ρg/ ρ is the relative density of the 
sediment compared to that of the fluid, g the gravita-
tional acceleration and d the diameter of the grains. φ 
is the angle of the local sand bed slope (i.e., tan φ=-
hx) and φs is the internal angle of friction of the 
granular materials. Θc0 is the critical value of the 
Shields parameter to set grains into motion on a flat 
horizontal sand bed. Note that q is proportional to a 

volumetric flux: qb = c [(s-1)gd3]1/2 (c is a numerical 
constant). 
 
Finally, the model is closed by the mass conserva-
tion equation for the grains: 
 

qh xt ∂=∂                  (3) 

 
The trivial stationary solution of the model equations 
corresponds to a simple linear shear flow over a flat 
horizontal sand bed.  The flow profile and the sedi-
ment flux are given by: 
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where Θ0=νγ/g(s-1)d is the Shields parameter char-
acterizing the flow over a flat bed. 
 
We shall first recall the result of the linear stability 
analysis of the flat sand bed. The equations of the 
flow are usually solved using the quasi-stationary 
approximation, since the typical hydrodynamical 
time is generally much smaller than the typical mor-
phological time of the bed. Within this approxima-
tion, the dispersion relation for modes of the form 
h(x,t) = h1 exp(i k x + ω t) (k being the wave number  
and ω the growth rate) can be derived (Charru et al. 
2002, Valance et al. 2005). In the deep water ap-
proximation and the long wavelength limit, one 
finds: 
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where Ai is the Airy function and lν=(ν/γ)1/2  is a 
'viscous' length. We have introduced the parameter µ 
= (Θ0-Θc0)/Θc0, which will be referred to as the rela-
tive shear stress excess. The real part of the growth 
rate consists of two different terms:  the first one, 
which scales as k4/3, plays a destabilizing role and 
results from fluid inertia; the second one, propor-
tional to k2, stabilizes the sand bed at larger wave-
length and is due to the slope effect in the sand 
transport law. As a result, there exists a band of un-
stable modes. The wave number and the growth rate 
of the fastest growing mode are given by: 
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where we have introduced the length lν0 =ν/[(s-1) 
gdΘc0]

1/2, which corresponds to the critical value of 
the viscous length lν at the onset of grain motion. 
The sand bed is unstable as soon as the shear rate is 
strong enough to set the grains into motion (i.e., µ 
>0). The most dangerous mode is expected to prevail 
in the first stages of the instability and should give 
an order of magnitude of the initial wavelength of 
the ripples. This linear analysis predicts that the lat-
ter decreases with increasing shear stress µ and in-
creasing internal friction angle φs. 
 
 
3 NONLINEAR ANALYSIS 
 
To investigate the subsequent evolution of the rip-
ples, it is necessary to go beyond the linear stability 
analysis and take into account the nonlinearities. We 
therefore performed a weakly nonlinear analysis via 
a multiple scale scheme. First we should introduce 
an appropriate small quantity ε, that we choose to be 
equal to tan φs. For standard internal angles of fric-
tion (from 200 to 300), tan φs is comprised between 
0.3 and 0.5. We will assume however that tan φs is 
sufficiently small (typically of order of 0.1) and will 
extrapolate the results of our analysis to greater val-
ues of tan φs. The wave number of the fastest grow-
ing mode and its growth rate can be expressed in 
terms of ε. One finds that kmax ~ ε 3/2 and ωmax ~ ε 2. 
A long-wave equation should be therefore derivable. 
In a multi-scale analysis, we introduce slow spatial 
variables X= ε3/2 x, Z= ε3/2 z, and a slow time vari-
able T= ε2 t. The strategy is then to rewrite the sys-
tem equations in terms of the new variables and to 
make an expansion in power of  ε. The system equa-
tions are solved at successive order and the sought 
non-linear equation for the bed profile arises as a 
compatibility condition. This multi-scale analysis is 
quite standard and details can be found in (Kassner 
et al. 2002).  
In the sequel, we will use dimensionless variables: 
lengths will be reduced by lν0 =ν/[(s-1) gdΘc0]

1/2 and 
time by τ=lν0

2/[(s-1)gd3]1/2. The nonlinear analysis 
yields to leading order: 
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A,B,C and D are constant parameters and read: 
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qℵ (h) is a Hilbert-type integral and its Fourier trans-

form reads simply 2|K|q ĥexp(iqπ|K|/2K) (for 
0<q<1). In eq. (7), we have neglected high order 
nonlinear contributions in h (i.e., terms scaling as hn 
with n>2). 

Upon rescaling of space, time and amplitude (X 
→X/B3/2, h→h/B3/2 and T→T/AB3), the above equa-
tion can be rewritten in a form in which only two pa-
rameters survive. Therefore, all parameters can be 
set to unity except two, denoted below as a and b: 
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a and b can easily determined: a=D=Θc0

3/2/4 and 
b=C/B2

≈4.3/(1+µ). This nonlinear equation is non-
local. The non-locality appears in the linear terms as 
well as in the nonlinear ones and is due to the long-
range interactions mediated by the fluid. To our 
knowledge, it is the first time that such a nonlinear 
and non-local equation has been derived in the con-
text of sand bedforms. Similar non-local equations 
but with different types of nonlinearities have been 
however reported in other contexts such as in the 
case of the Grinfeld instability for elastic strained 
solids (Kassner et al. 2002).  
 
 
4 RESULTS 
 
Let us now investigate the features of eq. (10). First, 
it can be easily checked that the linearization of this 
equation produces the linear dispersion relations [ 
eq. (5)], which reads in its dimensionless form as 
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ω=K4/3-K2-i 3 K4/3. Second, the numerical resolu-
tion of eq. (10) shows that an initially random rough 
bed evolves towards a ripple pattern, which exhibits 
at long time a coarsening process (i.e., the wave-
length increases in course of time) (see Fig. 2). 
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Fig. 2: Spatio-temporal diagram showing the evolution of an 
initial random rough sand bed. a=0.1 and b=0. 
 
For the parameters investigated so far (i.e., 0<a<1 
and 0<b<1), the coarsening process never stops: the 
mean wavelength grows indefinitely and no final 
state is selected.  Fig. 3 shows a typical evolution of 
the mean wavelength and amplitude of the ripple 
pattern as a function of time starting from an initial 
random rough sand bed. One can note that before the 
coarsening process operates, there is a transient re-
gime where the mean ripple wavelength remains 
constant (and is equal to the linearly most unstable 
mode) while its amplitude grows exponentially fast. 
When coarsening proceeds, the wavelength and am-
plitude both exhibit a power law behavior (i.e., λ~ tξ  
and A~tχ).  The scaling exponents are not much sen-
sitive to the equation parameters a and b. One finds 
ξ≈0.81±0.02 and χ≈0.27±0.02. In addition, the drift 
speed of the ripple pattern is also found to obey a 
power law, vd~tψ with ψ≈0.22±0.02. 
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Fig. 3: Evolution of the mean wavelength and mean width of 
the ripple pattern in course of time. The initial bed profile is 
random and the system size L is equal to 64 λmax. a=0.1 and 
b=0. 
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Fig. 4: Amplitude A of the steady-state solutions versus perio-
dicity λ. 
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Fig. 5: Profile of the steady-state solutions for different periods. 
a=0.1 and b=0. 
 
It is instructive to characterize more precisely the 
morphology of the ripple pattern in course of the 
coarsening process. From the previous results, one 
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deduces that the amplitude A increases with increas-
ing λ while the ratio A/λ decreases with increasing λ 
(since χ<ξ). The ripples become therefore more and 
more elongated as coarsening proceeds: there is no 
scaling invariance. A simple way to check these re-
sults is to determine the steady state solutions of eq. 
(10) with a given periodicity λ. Fig. 4 displays the 
amplitude of the steady solutions as a function of the 
periodicity λ and their corresponding profiles. The 
data have been obtained for given values of the 
equation parameters (i.e., a=0.1 and b=0) but the fea-
tures remain qualitatively unchanged for the range of 
values investigated so far.  One finds in particular 
that the ripple amplitude A scales as (λ-λc)

1/3 (where 
λc is the cut-off wavelength below which all the 
mode are stable; λc =2π).  One can note that the ratio 
χ/ξ is not far from 1/3. This strongly suggests that 
the analysis of steady-state solutions provides reli-
able information with respect to the ripple dynamics 
and supports the statement established recently by 
Politi and Misbah  (Politi et al. 2004) that  the coars-
ening process of one-dimensional fronts occurs only 
if the periodicity λ of the steady-state solutions is an 
increasing function of its amplitude A. 

We also determined the drift speed vd of the sta-
tionary patterns and found that vd ~λ1/3 for λ > λc. It 
follows that for large wavelengths (i.e., λ<<λc), the 
migration speed of the ripple is inversely propor-
tional to the ripple amplitude, vd ~1/A. This result is 
similar to that found for barchane dunes in the con-
text aeolian sediment transport (Andreotti et al. 
2002).  
  
 
5 CONCLUSION 
 
In conclusion, we derived a non-local and nonlinear 
equation for the dynamics of sand ripples sheared by 
a two-dimensional liquid flow of infinite depth. The 
resolution of this equation shows that coarsening oc-
curs and no final state is selected. Within this flow 
configuration, there is no mechanism able to inter-
rupt the coarsening process. This result is supported 
by experimental findings of Loiseleux et al. in a 
quasi two-dimensional flow of large water depth 
(Loiseleux et al. 2004).  The three dimensionality of 
the flow may cause an inhibition of the coarsening. 
Indeed, it has been shown recently that unstable 
transverse modes can couple to longitudinal ones in 
a nonlinear way and gives birth to steady two-
dimensional patterns (Langlois et al. 2005). This 
may explain why coarsening stops in the experiment 
of Bass (Bass 1994) where the flume is wide enough 
in order that transverse modes can develop.  More-

over, the shallowness of the flow may also cause the 
interruption of the coarsening. The experiments of 
Rehberg et al. (Rehberg et al. 2002), in which the 
amplitude of the final ripple pattern is of order of the 
flow height, seem to confirm this hypothesis. It 
would be therefore interesting for the future to test 
the above hypotheses by solving numerically in 2D 
and 3D the full Navier-Stokes equations coupled to 
the sand transport law. 
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