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ABSTRACT: We investigate theoretically the nonlineaxolution of sand ripples in a viscous fluid wheen
granular bed is submitted to a two-dimensional fenishear flow. On the basis of the hydrodynamicaeq
tions and a semi-empirical sand transport law, emevd a non-local and nonlinear equation for theashyics
of the bed profile in the case of infinite flow diepThis equation reveals a coarsening processwtwe-
length of the ripple pattern increases indefinitglth time and no final state is selected. The terapevolu-
tion of the amplitude, wavelength and drift velgauf the ripple pattern is carefully analyzed: iartcular,
the drift speed is found inversely proportionathe ripple amplitude. Finally, we argue that coansg may
interrupt either when the flow is three-dimensioaalwhen the flow depth is finite (i.e., comparabdethe
amplitude of the ripple pattern).

1 INTRODUCTION process stops while other ones (Loiseleux et al.

2002) suggest that the coarsening proceeds indefi-
The description and understanding of patterns imjtely. We show in this paper that in the case of
sand produced by the flow of air or water stillleha two-dimensional liquid flow of infinite depth (i.e.
lenges the community (Nishimori et al. 1993,much larger than the dimension of the ripple pajter
Werner et al. 1993, Csahok et al. 2000, Betat.et ajhe ripple wavelength increases indefinitely in rseu
1999, Stegner et al. 1999, Hansen et al. 2001, Arpf time and no final state is selected. We thegefor
dersen et al. 2002). Despite diverse efforts irolgd argue that coarsening may be interrupted only when
phenomenological and stochastic models (Nishimorihe flow is three-dimensional [as in (Baas 1994)] o
et al. 1993, Werner et al. 1993) for ripples in airwhen it is shallow [as in (Rehberg et al. 2002)].
analogic nonlinear modeling for sand vortex ripples On the basis of the hydrodynamic equations and a
(Hansen et al. 2001, Andersen et al. 2002), or corsemi-empirical sand transport law, we are ablesto d
tinuum description based on the symmetries of theive, in the case of a two-dimensional and steagy |
problem (Csahok et al. 2000), theoretical underyid flow of infinite depth, a closed equation ftret
standing has remained sparse. Here, we address iifhamics of the sand bed profile. This equation is
issue of the wavelength selection of sand ripples i non local and nonlinear and reveals the existefice o
steady and laminar two-dimensional liquid flow. A3 coarsening process that never stops. To our knowl
flat bed of sand subject to a steady fluid flovg&n-  edge, this is the first time that such an equatate-

erally unstable and gives rise to the so-callegleip rived in the context of sand bedforms.
patterns. In the first stages of the instabilibhg pat-

tern presents a well-defined periodicity, but laiay

the ripple wavelength tends to increase in coufse o

time. In air, this coarsening process clearly stop@ MODEL

probably due to the existence of a strong couplin _ _ _ _ _
between the sand transport and the shape of tide sa¥¥e consider a Newtonian and viscous fluid flowing
bed. In water, this is still a matter of debate trete  Over & sand bed. We focus on a Couette flow con-
is no clear experimental evidence to provide for diguration, i.e., the upper plate is pulled at am- |
definite answer (Baas 1994, Rehberg et al. 200R20sed and constant speeg it the x-direction (see
Loiseleux et al. 2004). Some experiments (Baaglg. 1). The equations of motion for the fluid read
1994, Rehberg et al. 2002) show that the coarsening
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po.u+p(ulu)u=-Op+70°u volumetric flux: g = ¢ [(s-1)gd]*? (c is a numerical

1
Ou=0 (1)  constant).

. _ o Finally, the model is closed by the mass conserva-
u=(u,w) is the fluid velocity in the plane (O.x.3), tjon equation for the grains:
the pressurg the volumetric mass of the fluid, and
n its dynamic viscosityv=n/p being the kinematic a.h=04q (3)
viscosity). These equations should be supplemented

with conditions at the boundaries. At the sand be o . : .
surface [i.e.. z=h(x,)]. - G, h + w =& h and u+w the trivial stationary solution of the model eqoas

) ” ... corresponds to a simple linear shear flow oveat fl
ox h =0 (the first condition expresses the continuit P P

between the fluid velocity, perpendicular to thadsa Yhorizontal sand bed. The flow profile and the sedi

bed, and the normal displacement speed of the bem,ent flux are given by:
and the second one is a consequence of the no—slip(z) “U. 7/L=vy7z
condition of the fluid at the sand bed surface)thst OR/ T o 4 (4)

upper fluid surface (i.e., z=L), usland w=0. Qo =Gy (@o -0,

where ©p=vy/g(s-1)d is the Shields parameter char-
acterizing the flow over a flat bed.

Plate moving at U —

We shall first recall the result of the linear sliap
analysis of the flat sand bed. The equations of the
flow are usually solved using the quasi-stationary
approximation, since the typical hydrodynamical
time is generally much smaller than the typical mor
phological time of the bed. Within this approxima-
tion, the dispersion relation for modes of the form
Fig.1: Two-dimensional laminar shear flow over dodmed  h(X,t) = h exp(i k x +wt) (k being the wave number
sand bed. and w the growth rate) can be derived (Charru et al.
2002, Valance et al. 2005). In the deep water ap-

The transport of sediment is induced by the begroximation and the long wavelength limit, one
shear stress (i.e., the flow shear stress calclkgte finds:

the sand surface) but its precise evaluation isanot
simple matter since it involves intricate and coexpl

Shear Flow —» L

Sand Bed

X

processes such as grain-grain and fluid-grainacter 3 K2 2
tions. Up to now, there is no sound theoretical de](w) :&@ 2l A0 @+ p)k P -
scription for the transport of particles. Therefore 2, ° tang
will use the semi-empirical law established by
Meyer-Peter and Miiller (Fredsoe et al. 1992): O(w) = %9%3’2[\/5 Ai0)k*?1 *"°

3/2 (5)
q :q{@_@%(l_ tan(”ﬂ (2) Where Aiis the Airy function and#(v/y)'? is a

tang, 'viscous' length. We have introduced the parameter

= (©p-Oc0)/Oco, Which will be referred to as the rela-
O is the dimensionless bed shear stress, the saicalltive shear stress excess. The real part of thetrow
Shield parameter® = o/ pg(s-1)d, whereo is the rate consists of two different terms: the firsiepn
bed shear stress, ®#p is the relative density of the which scales as*R, plays a destabilizing role and
sediment compared to that of the fluid, g the deavi results from fluid inertia; the second one, propor-
tional acceleration and d the diameter of the gt&n tional to K, stabilizes the sand bed at larger wave-
is the angle of the local sand bed slope (i.e.gtn |ength and is due to the slope effect in the sand
ho and ¢ is the internal angle of friction of the i 5nqhort law. As a result, there exists a bandnef

gra_nular materialsOc is the.crlt_lcal vaIu_e of the stable modes. The wave number and the growth rate
Shields parameter to set grains into motion orat fl : . )
of the fastest growing mode are given by:

horizontal sand bed. Note that q is proportionah to
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K. = (tanq)s)slz @+4)° h, = _Aax{ B[D1/3(h) —hy ] + D[Dus(h) - hx]2 (7)
3, +Chi,5(h) }
s (6)
= we%m(tam@)zu”z @+u)* where
’ X h (xl)
where we have introduced the length +v/[(s-1)  [q(h) =T(a)sin@7) J.dX'(XX_—X,)q (8)

gd©c]*2, which corresponds to the critical value of
the viscous length, lat the onset of grain motion.
The sand bed is unstable as soon as the sheas rat
strong enough to set the grains into motion (je., 312 1

>0). The most dangerous mode is expected to prevaiIA =@3/2)0,, "

in the first stages of the instability and shouideg B = (3/2)rAi (0) L+ )*"*
an order of magnitude of the initial wavelength of _ ., 53
the ripples. Thisglinear analysis predicts thatlt?lrte C=37A" (0 @+ 4)
ter decreases with increasing shear stressid in- D=0, /4
creasing internal friction anglg.

éA,B,C and D are constant parameters and read:
9)

0, (h) is a Hilbert-type integral and its Fourier tan

form reads simply 2|Rﬁexp(iqn|K|/2K) (for
0<g<1). In eqg. (7), we have neglected high order

To investigate the subsequent evolution of the ripponllnear contributions in h (i.e., terms scalirsgta

ples, it is necessary to go beyond the linear lgtabi with n>2).

analysis and take into account the nonlinearitiés. _);J(;)Ig,]z rﬁi:r?/l;grg% g; dSE)Ii:'I(?/’AtIIBT)e tﬁgdasx/ghteu%z-(x
therefore performed a weakly nonlinear analysis vi on can’be ewritten in & form in’which o tv\?a-

a multiple scale scheme. First we should introduc y p

. . rameters survive. Therefore, all parameters can be
an appropriate small quantity that we choose to be . )
: . set to unity except two, denoted below as a and b:
equal to tanp,. For standard internal angles of fric-

tion (from 20 to 30), tanq is comprised between _ )

0.3 and 0.5. We will assume however that ¢afs r =0, { Dus() =]+ a0, (h) -] (10)
sufficiently small (typically of order of 0.1) aniill +bh,,5(h) }

extrapolate the results of our analysis to greaér

ues of tanp. The wave number of the fastest grow-a and b can easily determined: a€s'%/4 and

ing mode and its growth rate can be expressed ip=C/B*~4.3/(141). This nonlinear equation is non-
terms ofe. One finds that kax~ € ¥? andwmax~ €2 local. The non-locality appears in the linear teams

A long-wave equation should be therefore derivablewell as in the nonlinear ones and is due to thg-lon
In a multi-scale analysis, we introduce slow spatiarange interactions mediated by the fluid. To our
variables X=£¥2x, Z=¢%?z, and a slow time vari- knowledge, it is the first time that such a nordine
able T=€? t. The strategy is then to rewrite the sys-and non-local equation has been derived in the con-
tem equations in terms of the new variables and ttext of sand bedforms. Similar non-local equations
make an expansion in power ef The system equa- but with different types of nonlinearities have hee
tions are solved at successive order and the sough@wever reported in other contexts such as in the
non-linear equation for the bed profile arises as §ase of the Grinfeld instability for elastic stragh
compatibility condition. This multi-scale analysgss solids (Kassner et al. 2002).

quite standard and details can be found in (Kassner

et al. 2002).

In the sequel, we will use dimensionless variables4 RESULTS

lengths will be reduced byol=v/[(s-1) gtBc]*? and

time by t=lyo¥[(s-1)gd]*%. The nonlinear analysis Let us now investigate the features of eq. (10ptFi
yields to leading order: it can be easily checked that the linearizatiomhcs

equation produces the linear dispersion relations [
eq. (5)], which reads in its dimensionless form as

3 NONLINEAR ANALYSIS

30¢



100 10

w=K*3-K%i/3K*® Second, the numerical resolu- F T T LR
tion of eg. (10) shows that an initially random gbu - ]
bed evolves towards a ripple pattern, which exsibit <§ f 1 9
at long time a coarsening process (i.e., the WaveE 0L 11 N%
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Fig. 2: Spatio-temporal diagram showing the evohlutof an
initial random rough sand bed. a=0.1 and b=0.

For the parameters investigated so far (i.e., 0O<a<

and 0<b<1), the coarsening process never stops: tlF

~

mean wavelength grows indefinitely and no final
state is selected. Fig. 3 shows a typical evatutib

the mean wavelength and amplitude of the ripple
pattern as a function of time starting from aniahit

random rough sand bed. One can note that before t
coarsening process operates, there is a trangent |
gime where the mean ripple wavelength remain:
constant (and is equal to the linearly most unstabl

time t

Fig. 3: Evolution of the mean wavelength and meadfthwof
the ripple pattern in course of time. The initi@dbprofile is
random and the system size L is equal toAg4. a=0.1 and
b=0.
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Fig. 4: Amplitude A of the steady-state solutiomssus perio-
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mode) while its amplitude grows exponentially fast.dicity A.
When coarsening proceeds, the wavelength and am-

plitude both exhibit a power law behavior (i%, t
and A~t). The scaling exponents are not much sen
sitive to the equation parameters a and b. Ones finc
£~0.81+£0.02 ank~0.27+£0.02. In addition, the drift
speed of the ripple pattern is also found to obey
power law, y~t¥ with ()=0.22+0.02.

04

T

0,3

h/A

XIA
Fig. 5: Profile of the steady-state solutions fiffedent periods.

a=0.1 and b=0.

It is instructive to characterize more preciselg th
morphology of the ripple pattern in course of the
coarsening process. From the previous results, one
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deduces that the amplitude A increases with inerea®ver, the shallowness of the flow may also cause th
ing A while the ratio AX decreases with increasing interruption of the coarsening. The experiments of
(sincex<&). The ripples become therefore more andRehberg et al. (Rehberg et al. 2002), in which the
more elongated as coarsening proceeds: there is amplitude of the final ripple pattern is of ordéitioe
scaling invariance. A simple way to check these reflow height, seem to confirm this hypothesis. It
sults is to determine the steady state solutiorexjof would be therefore interesting for the future tstte
(10) with a given periodicity. Fig. 4 displays the the above hypotheses by solving numerically in 2D
amplitude of the steady solutions as a functiothef and 3D the full Navier-Stokes equations coupled to
periodicity A and their corresponding profiles. The the sand transport law.

data have been obtained for given values of the

equation parameters (i.e., a=0.1 and b=0) butdhe f

tures remain qualitatively unchanged for the ramige

values investigated so far. One finds in particula

that the ripple amplitude A scales as\()'® (where

A is the cut-off wavelength below which all the

mode are stable; =2mn). One can note that the ratio 6 REFERENCES

x/¢ is not far from 1/3. This strongly suggests that

the analysis of steady-state solutions provideis relAndersen, K.H.& Abel, M. & Krug, J.& Ellegaard, C&
able information with respect to the ripple dynasnic Sondergaard, L.R& Udesen, J. 200Phys. Rev. Leti88,
and supports the statement established recently By#4302-

Politi and Misbah (Politi et al. 2004) that theacs- Andreotti, B.& Claudin , P& Douady, S., 200Zur. Phys. J.
ening process of one-dimensional fronts occurs onl§ 28 321.

. . i . %aas, J.H. 19945edimentology 4185-209.
if the periodicitya of the steady-state solutions is ANpetat, A& Kruelle, C.A. & Frette, V.& Rehberg I. 2002.

increasing function of its amplitude A. Eur. Phys. J. E 8, 465,

We also determined the drift spegdo¥ the sta- Charru, F & Mouilleron-Arnould, H.. 2002). Fluid Mech
tionary patterns and found that-w“*for A > A.. It 452, 303.
follows that for large wavelengths (i.2s<A.), the Csahok, Z. & Misbah, C. & Rioual, F. & Valance, 2000.

migration speed of the ripple is inversely propor- Eur. Phys. E3, 71.
9 P Pp y prop Fredsoe, J. & Deigaard, R. 1992. Mechanics of ebastdi-

tional to the ripple amplitudeqw1/A. This resultis  ment transport , World Scientific.
similar to that found for barchane dunes in the-con Hansen, J.L. & vanHecke, M. & Ellegaard, C. & Arshar,
text aeolian sediment transport (Andreotti et al. K.H. & Bohr, T. & Sams, T. 2001Phys. Rev. Lett87,

2002) 204301.
' Langlois, V. & Valance, A. 2005Phys. Rev. Let@4, 248001.

Kassner, K. & Misbah, C., 200Phys. ReVE 66, 026102.
Loiseleux, T. & Doppler, D. & Gondret, P. & Rabaul;M.

5 CONCLUSION 2004. Second International Workshop on Marine Sandwave
and River Dynamicgedited by J.M. Hulsche, Y. Garland, D.

In conclusion, we derived a non-local and nonlineaﬁ_ier: University of Twente).
ishimori, H. & Ouchi, N. 1993Phys. Rev. Leti1, 197.

equation for the dynamics of sand ripples sheayed B p. & Misbah C. 2008hys. Rev. Let2, 090601.
a two-dimensional liquid flow of infinite depth. The valance A. & Langlois, V. 2005. Eur. Phys. J. B 283.

resolution of this equation shows that coarsenittg o Werner, B.T. & Gillpsie, D.T. 199%hys. Rev. Let71, 3230.
curs and no final state is selected. Within thasvfl
configuration, there is no mechanism able to inter-
rupt the coarsening process. This result is supgorte
by experimental findings of Loiseleux et al. in a
quasi two-dimensional flow of large water depth
(Loiseleux et al. 2004). The three dimensionality o
the flow may cause an inhibition of the coarsening.
Indeed, it has been shown recently that unstable
transverse modes can couple to longitudinal ones in
a nonlinear way and gives birth to steady two-
dimensional patterns (Langlois et al. 2005). This
may explain why coarsening stops in the experiment
of Bass (Bass 1994) where the flume is wide enough
in order that transverse modes can develop. More-

30¢



