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1 INTRODUCTION 

In rivers, ripples and dunes are patterns at two well-
separated wavelengths λ, that are respectively con-
trolled by the grain size d and the depth of water H 
(Allen, 1980). Since the pioneering work of (Ken-
nedy, 1963), it is commonly accepted that both pat-
terns form by a primary linear instability (Colom-
bini, 2004), statement that we wish to revisit in this 
paper. 

Because the hydrodynamic timescales are much 
shorter than those of the bedform growth, the under-
standing of pattern formation in rivers can be split 
into a hydrodynamic problem and another regarding 
sediment transport issues. We present here the gen-
eral mechanism responsible for the instability of a 
flat sand bed. Emphasizing the stabilizing role of the 
free surface, we evidence that river dunes can not 
form from a linear instability. Finally, we discuss a 
non-linear criterion for the selection of the size of 
dunes and mega-dunes. 

2 A VERY GENERAL FRAMEWORK 

2.1 A purely hydrodynamic problem 

In this context, we compute the two dimensional tur-
bulent flow confined between a free surface and a 
periodic wavy bottom. This bottom is characterized 
by its wavelength λ, or its wave-number k=2π/λ and 
its amplitude 2ζ  (see Fig. 1). The dynamical equa-

tions governing the evolution of the mean flow are 
closed by the means of a Prandtl mixing length ap-
proach, which relates the stress Reynolds tensor to 
the velocity gradients. The equations are expanded 
with respect to the bottom corrugation aspect ratio 
kζ  which is the small parameter of the problem. 

A main output of this hydrodynamic calculation is 
the phase difference between the bottom topography 
Z=ζeikx and the basal shear stress τ. We introduce 
two dimensionless functions A and B, defined by: 

τ = τ 0[ A(k) + iB(k)]kζeikx  (1) 

where τ0 is the reference basal shear stress over a flat 
bed. A represents the component of he stress tensor 
in phase with the bottom topography and B controls 
the phase shift. Its sign gives the position of the 
shear stress maximum with respect to the crest of the 
bumps. For instance, when B>0, the maximum of τ 
is shifted upstream. This generic case is represented 
in Figure 1. The location of shear maximum corre-
sponds to the position where the streamlines are 
squeezed. On the other hand, a negative value of B 
corresponds to a downstream shift of the maximum 
of τ. Except the hydrodynamic roughness z0, turbu-
lence does not introduce any characteristic length 
scales, so that, the spatial shift is proportional to λ 
and the ratio B/A. 
These coefficients A and B show weak (logarithmic) 
dependencies with kz0, and their typical values are 
around unity. We have checked that more sophisti-
cated descriptions of the turbulence, e.g. stress ani-
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ABSTRACT: It is widely accepted that both ripples and dunes form in rivers by primary linear instability, the 
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primary instability. We propose a weakly non-linear description suggesting that dunes result from a pattern 
coarsening process, the final wavelength being that for which the bedform amplitude is maximum. 



 

 
130 

sotropy or second order turbulent closure, do not al-
ter much these functions. However, a potential des- 

 
 
Figure 1. Sketch of the instability of a wavy bottom sheared by 
a turbulent flow. 

 
cription of the flow does not lead to any phase shift 
between Z and τ. 

2.2 The sediment transport issue 

We now consider an erodible bottom sheared by a 
turbulent stream. If the strength of the flow is suffi-
ciently high (above a threshold τth), grains get de-
tached from the bed. In turn, the moving grains in-
teract with the flow and decelerate it, so that the flow 
can only erode a limited quantity of sediment. We 
call qsat(τ), the saturated flux, which corresponds to 
the quantity of sediment that can be transported by 
the flow at equilibrium. 

The equilibrium state is not immediately reached 
and the relaxation towards this equilibrium depends 
on different processes limiting sediment transport, 
e.g. the ejection of the grains, the grain/fluid inertia. 
The choice of the relevant processes that have to be 
taken into account to describe the sediment transport 
is still a matter of debate and depends on the regime 
of the flow. In any case, the dominant process is the 
slowest of them and we call Lsat the spatial lag be-
tween the sand flux q and its saturated value qsat. In 
other words, Lsat and qsat integrate all details of sedi-
ment transport we need for our purpose. 

 

3 LINEAR ANALYSIS 

3.1 The instability mechanism 

We are now able to describe the mechanism, 
which makes an erodible flat bed unstable. Consider 
a bump such as that in Figure 1. It will grow if its 
crest is in the deposition zone. Following the mass 
conservation relation, the position of the flux maxi-
mum separates the erosion zone upstream from the 
downstream zone of accretion. The criterion of in-
stability can then be geometrically described as fol-
lows. Starting from the crest, the shear stress and 
thus the saturated flux is maximum at a distance 

~λB/A from it. The actual flux maximum is found 
after a space lag Lsat (see Fig. 1). 

 
 
Figure 2. Dimensionless growth rate as a function of the wave 
number k adimensionnalised by the hydrodynamic roughness z0. 
The dashed line corresponds to an asymptotically large flow 
depth and the solid line is for a finite flow depth H (here for 
Fr=0.8). 
 

Within a linear analysis of the flow, these qualita-
tive arguments can be translated into the mathemati-
cal expression of the dispersion relation, which ex-
presses the growth rate σ as a function of the wave-
number k. In the case of the shear velocity much lar-
ger than the transport threshold, one gets: 

σ = Qk2 B − AkLsat

1+ (kLsat )
2  (2) 

where Q is the reference saturated flux over a flat 
sand bed. σ is positive for large wave-lengths, which 
are thus unstable. On the other hand, bumps with 
small λ are stable (σ<0). This relation is plotted in 
Figure 2. It shows a pronounced maximum for 
kLsat~1. This length-scale is the size at which ripple 
pattern first appears. 

3.2 Effect of the free surface 

The presence of the free surface modifies the shape 
of the dispersion relation. In comparison to the pre-
vious case, a stabilized zone (σ<0) appears for wave-
lengths scaling on the flow depth (see solid line in 
Fig. 2). This dip is more pronounced for larger 
Froude numbers. 
This stabilization is due to a resonance phenomenon. 
The periodic wavy bottom excites surface waves at 
the wavelength λ. The phase between the two varies 
from 0 to π, so that, at the resonance the streamlines 
are squeezed downstream the crests (see Fig. 3). In 
conclusion, the growth rate is always lower with 
than without a free surface. Therefore, river dunes 
can not form by a linear instability of the bed. 

4 WEAKLY NON-LINEAR RESULTS 

To go beyond the linear analysis, we have ex-
tended the expansion of the flow field up to the third 
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Figure 3. Sketch of the resonance of the free surface: the 
streamlines are squeezed downstream the crests of the wavy 
bottom. This is a stabilizing mechanism. 

 
order in the aspect ratio ζ/λ, to get the first non-
linear corrections to the basal shear stress. 

The first result of these calculations is that the 
phase shift between Z and τ decreases when ζ in-
creases. For a given λ, we call ζs the amplitude for 
which the position of the maximum of q precisely 
coincides with the crest of the bed corrugation, 
which corresponds to a steady propagative pattern. ζs 
is represented as a function of λ  in Figure 4. In the 
case of an infinite turbulent boundary layer, the rela-
tionship between ζs and λ is linear, which corre-
sponds to a constant aspect ratio, whose value 
(2ζ/λ≈0.07) matches with observations. 

In the presence of the free surface, the streamlines 
become compressed over the crests, causing the 
steady amplitudes to converge to smaller values. 
Moreover, the stabilizing mechanism from reso-
nance amplifies this effect. The resulting relation be-
tween ζs and λ presents a pronounced maximum 
around λ=H, remarkably insensitive to variations of 
parameters of the modeling (see Fig. 4). A drift 
along the ζs(λ  ponds to a pat-
tern coarsening, i.e. an increase of the wavelength 
over time. We expect this coarsening to stop at the 
maximum for theoretical reasons (Politi & Misbah, 
2004). Besides, the largest ζs is the most likely to 
dominate the flow and to be visualized. The physical 
mechanisms involved in the pattern coarsening (e.g. 
ripples collisions and interactions) are still to be 
clearly identified and need to be studied in more de-
tails in this context. 

Finally, we can notice in Figure 4 a second 
smoother maximum for greater wavelengths. In con-
trast with the previous one, its position and ampli-
tude are more sensitive to the parameters. For in-
stance, its amplitude decreases for larger Froude 
numbers. Although these preliminary results require 
further work, this second peak suggests an interest-
ing way to explain the formation of mega-dunes in 
large rivers, studied for example in Rio Paraná (Par-
sons & al, 2005). 

 

 
 
Figure 4. Amplitude of the steady propagative dune as a func-
tion of its wavelength (both normalized by H). The dashed line 
corresponds to an asymptotically large flow depth and the solid 
line is for a finite flow depth H (here for Fr=0.3). 
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