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Abstract
A time-series of interpolated multibeam data of non-parallel sand waves covered by mega ripples is
analyzed on deformation. Parameters for a grid point wise, sinusoidal and time dependent model are
identified, and estimated by a mixture of local and global statistical techniques.

1. Introduction.

It is very fascinating to find out that The Netherlands show much more relief under the sea than at land:
sand waves with heights of around 10 meters and wavelengths of several hundreds of meters are covered
by mega ripples that are about one tenth of the size of the sand waves. Moreover, both structures change
on rather short time scales, [4].

These changes of sea bed topography are a possible cause of danger for passing ships. Therefore, parts of
the North Sea are intensively monitored by Dutch authorities like the Royal Navy and the North Sea
Directorate who have developed methods of predicting local sea bottom changes,[1,9]. During the last
fifteen years this monitoring has lead to an archive of singlebeam and multibeam echo data. In this article
we analyze a time series of nine epochs of interpolated multibeam data covering a 1 km2 sand wave area
near the main ship route from the Channel towards Rotterdam, see Figure 1.

We try to detect and quantify the deformation of the sand waves and, moreover, we identify and determine
parameters that describe the movement of the mega ripples. Methods for detecting deformation out of data
obtained by leveling were developed in the seventies at the geodesy department of Delft University of
Technology, [7,8] based on the Delft method of testing, [5,6]. The data sets considered at that time were
relatively small. The amount of data produced by modern survey equipment is much higher and asks for
efficient, automatic methods. Still, the Delft method has already proved to be useful for deformation
analysis of singlebeam, [1] and of laser altimetry data, [3]. In [3] models are tested for deformation at
single grid positions. In [1] global models are considered as well, but it is assumed that the crest of the
sand waves are parallel. This is clearly not the case in Figure 1. Therefore we will use a mixed local/global
approach to estimate deformation parameters. In Sections 2 and 3 we identify these parameters and
discuss the Delft method of deformation analysis, while in Section 4 we demonstrate how a first value for
the identified parameters can be obtained. Finally, in section 5, we discuss the results and give directions
for further research.
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Figure 1: The considered part of the sea bottom in 2002. Depths are given in decimeters.

2. Expected deformation.
Before starting to model expected deformation, some feeling for the available data is required. Multibeam
data interpolated to the same regular 5 meter grid is available for the years 1992-1997 and 2000-2002
covering an area of 1 km2. This means that for every year approximately 200 x 200 = 40 000 heights are
given. For every year the average, the minimal and the maximal depth are presented, in decimeters, in
Table 1 (Columns 2, 3, and 4). Furthermore, the data from 1992 to 2001 were subtracted from the 2002
data. The results of this operation are listed in columns 5 to 8: here the average difference, the maximal
upward difference and the maximal downward difference are presented. We conclude that the average
difference is in the order of 1 dm, while differences up to a few meters may occur. The last column, NaN,
reports the number of subtraction failures due to missing data.

TABLE 1 : SOME CHARACTERISTICS OF THE AVAILABLE DATA SETS.
year
  zav.

zmin

zmax

∆z02,av

max. dev.
min. dev
NaN

1992
338.2
268.6
380.5
1.48
43.4
-31.6
1282

1993
337.0
265.9
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380.2
-0.38
32.0
-22.8
1139

1994
336.2
262.8
378.7
-0.29
30.0
-27.8
870

1995
338.5
272.3
379.0
1.47
29.6
-23.9
3330

1996
337.7
261.8
379.4
1.24
24.5
-23.0
864

1997
338.2
265.6
379.8
1.65
23.7
-21.4
874

2000
335.2
262.2
376.1
-1.35
24.0
-28.3
1231

2001
336.7
267.1
378.1
-0.21
23.0
-20.0
1905

2002
336.5
267.2
378.2
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Analyzing Digital Elevation Models for every year gives the feeling that the bigger structures, the
sand waves, are relatively stable. Only near position (501 415, 5 758 130) the narrow sand wave
crest seems to connect to the bigger sand wave crest during the years. In Figure 1 the mega
ripples are clearly visible, but the 2002 data seem of better quality than most of the other data.

A next step is to consider some difference plots. In Figure 2 the difference between the 1994 and
the 2002 data is shown. Again, the mega ripples are clearly visible, which indicates that they are
moving. Near the top of the crests, the differences seem to increase, while the deep areas seem
relatively stable.

Figure 2: The difference between the 2002 and the 1994 data.

We conclude that at most positions the bigger features seem to be stable while the mega ripples
are expected to move over the sea bottom.

3. Deformation modeling and testing.

We will concentrate on finding parameters for models describing deformation or motion at local
scale, which means for us at grid point scale. If all data are available we have at every grid point
an observation vector
y = (h92, …, h97, h00, h01, h02)T

of n=9 observations. When using a linear deformation model consisting of m parameters, we look
for a parameter vector x ∈ Rn, given a (m × n) model matrix A. We model the error in the
observation by a variance σ, while we assume that there is no correlation between different
epochs. Therefore the covariance matrix Qy is just a multiple of the identity matrix. The best
estimation for the parameter vector is obtained by projecting the observation vector y into the
model space, that is

x̂  =  (ATQy
-1A)-1 AT Qy

-1
  y

By using the parameters found, we get adjusted observation parameters via ŷ  = Ay The weighted
distance Tm-n = (y – ŷ ) T Qy

-1
   (y – ŷ ) is called the test statistic and gives an indication on the the

quality of the approximation via the model A. The test statistic is compared to a critical value
κ(α,q) that depends on a level of insignificance α and the degrees of freedom q = m -n. A linear
model is said to be accepted if T(A) < κα(A). One can choose between different accepted models
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Ai by considering the quotient T/κα for every model Ai and picking the model with the lowest test
quotient as the most likely.

In the case that we consider, however, the simple linear models are not expected to be very
adequate: due to the moving mega-ripples, the sea bottom is likely to be locally unstable, while it
is unlikely that it will move up or down at constant speed. Therefore it was not a surprise that the
m=1 linear model that models a locally stable sea bottom of height h, and the m=2 linear model
that tests for positions that move up or down from initial position h with constant speed v, gave
only little positive response. Positions that test positively are situated in the deeper parts. This
confirms that the mega ripples have smaller amplitudes when located off the sand wave crests.

The results of the tests described above caused us to consider a more complicated deformation
model. To give a local description of the motion of the mega ripples we use the equation that
describes a plane wave that is propagating in one direction:

ψ(x ,y ,A ,k  ,φ0  ,θ  ,v ,t ) := A sin[k(x cos θ + y sin θ) – v t +φ0 ] (1)

Here A denotes the amplitude of the wave,  k the wave number, φ0 the initial phase, θ the angle
between the propagation direction of the wave and the horizontal x-axis, while t stands for time
and v for wave velocity. An example of such wave with θ=π/6 and v=0 is shown in Figure 3.

Figure 3 :A plane wave with parameters A=k=1, φ0=π/2 and θ=π/6.

It is not clear how to write Equation 1 in such a way that the parameters are in linear relation with
the depth values in the different years. Moreover, the number of parameters initially unknown (A,
k, φ0, θ, v)  is high compared to the number of data available per grid point location (at most 9).
Therefore it is not feasible to determine the parameters per grid point. Instead we will discuss
methods in the next section on finding good parameter values at more global scales. In the end,
once all parameters values are fixed, one can come back to Equation 1 and use the grid point data
to evaluate the wave function with the parameters found. Again, by analyzing the weighted
distance between the observation vector and the wave model one can, on one hand, get insight in
the fit of the observations in the model and, on the other hand, determine how well the model fits
compared to other models, like the linear models discussed above.

4. Determining parameters for the local wave function.

In this section we discuss different methods that work on different scales for determining the
parameters of the wave function as identified above.
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Global wavenumber.

The first parameter that we consider is the wave number k, or equivalently, the wavelength
λ=2π/k. We assume that the wavelength is more or less constant over the years. Therefore we use
the good quality 2002 data to determine it. We assume for the moment that the wavelength is
independent of the location as well. If this assumption is justified we can determine it by a simple
counting procedure. For this purpose we use the difference of the original 2002 data and a
smoothed version of the data, obtained by a nearest neighbour interpolation implemented in GMT
with suitable parameters. On the resulting difference plot, the mega ripples are clearly visible. As
most ripples seem to run from the South-West to the North-East, we count the number of mega
ripple crests along the SW-NE diagonal, that has a length of 1414 meter. We find 90 crests,
which corresponds to a wavelength of approximately 16 meter.

Local wave direction.

When looking at Figure 1, one gets the impression that the direction of the mega ripples is more
or less parallel to the direction of the sand waves. As the sand waves are not really parallel
themselves this implies that there is a local variation in the mega ripple direction. The sand waves
are more or less constant over the years, therefore we once again use the 2002 data to estimate the
local wave direction.

First we shortly discuss a method that did not work. In order to determine the wave direction
θ(x,y)at grid point (x,y) we used differently sized blocks of surrounding grid points. We
determined the best fitting plane wave of the form ψ = A sin[k(x cos θ + y sin θ) +φ0 ] with
parameters as in Equation 1, and k as determined above. Unfortunately the results were neither
much spatially correlated nor showing connection with Figure1. Most probably the available data
are too sparse.

Figure 4: Low variation in the red strips, high variation in the blue strips.

An alternative method did work out however. This method consists of determining variation in
different discrete directions for a block of measurements. The direction with the lowest variation
is in theory almost parallel to the crests of the mega ripples as present in the block. We define and
determine the variation in direction θ for at most n x n regular xyz data positioned in a block by
the following procedure.

1. Let Rθ =  







− θθ

θθ
cossin
sincos

 be the rotation matrix that rotates vectors over an angle θ

around the origin (0,0).
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2. Rotate all (x,y)values in the block. Determine the minimal y_ and maximal y+ value
after rotation. Define the strip width wθ := (y+ - y-) Divide the height z of an grid triple
(x,y,z)into horizontal strips according to their rotated y-value, that is, according to Rθ(y):

[ y-, y- +  wθ ), … ,[y- + (m-1) .wθ , y-  +  m.wθ )

such that  y- + (m-1). wθ  ≤  y+   <  y- + m. wθ . As a consequence, every grid height
belongs now to exactly one strip.

3. Suppose that zi belongs to strip Sk. Then the individual variation of zi is defined as
vθ(zi) = zi – mk where mk denotes the average height of the heights in strip Sk.

4. The overall variation in direction θ is just the sum of squares of all individual
variations: Vθ  = Σivθ (zi)2.

As an example we consider Figure 4, on the left. In the direction θ=0, the heights are divided into
the red strips, so all individual variations equal 0, as does the overall variation:V0=0. In the
direction θ=π/4 however, the individual variations vary, as the height values per strip vary, see
Figure 4, on the right, where the individual variations are shown. In this case, the overall
variation is given by Vπ/4=5/3.For a block of grid data that contains a maximum of (n ×  n)
heights (Some heights are missing due to e.g. measurement errors), we consider the 2n directions

-π/2, -π/2+π/(2n), … ,  π/2-π/(2n).

For every direction we compute the overall variation and we pick the direction that has minimal
variation as an approximation of the local mega ripple crest direction. This is demonstrated in
Figure 5, where blocks of (40 ×  40) meter are analyzed. In the middle of every block the
direction computed with the method just described, is indicated by a short red line. Note that the
mega ripples pass the crests of the sand waves in the direction perpendicular to the direction of
the crest. It is also clear that the directions as computed show correlation with neighbouring
directions.

Figure 5: The local direction of the mega ripples indicated by the red lines, on the left. On the
right, the amplitude of the mega ripples in decimeters.
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Local amplitude.

Figure 2 suggests that the amplitude of the mega ripples varies with the depth of the sand waves.
We verify this by considering (20m ×  20m) blocks for the 2002 data. If all grid points are
available, such blocks contain 16 heights. If  15 random heights of the sine function are
determined, the difference between the maximum height and the minimum height presents is on
average near to 1.93. Therefore we multiply the difference between the maximal and minimal
height per block by  1/1.93/2=0.518 to get a first estimate of the mega ripple amplitude, as a
function of the position. The result, that clearly demonstrates the relation between the amplitude
of the mega ripples and the position of the ripples on the sand waves, is shown on the right in
Figure 5.

Global speed.

Figure 6: Covariogram of variation of height in times at all grid points shows periodic
correlation.

The final parameter that is left, is the propagation velocity v of the mega ripples. We assume that
this parameter is independent of the position of the mega ripples in the sand wave landscape and,
moreover, we assume that the velocity is constant over the years. This implies that we can use all
data of all years available to determine the velocity. For a first guess we assume that the data in
all years was obtained at the same moment, which means that we can represent the echo
acquisition data by t=1, 2, 3, 4, 5, 6, 9, 10, 11. In this way we obtain for each position a set of
height data such that, by assumption, each data point should demonstrate the same periodic
behaviour. As in [1], we trace the periodicity by means of the covariogram of the data, see also
[2]. For each grid point i, we determine the average height z i over the years and the differences
dzji = z ij - z i between the individual height z ij in year j and the average height. In a next step we
collect all such differences at all grid points for any time interval between two loading data. This
results in an empiric covariance function, see Figure 6. This covariance function demonstrates
periodicity, but smaller time intervals are needed to conclude that the period that shows up in the
covariogram is indeed only one period in the propagation of the mega ripples.
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5. Further Research and Conclusions.
In this article we have shown how to obtain parameters for more complicated deformation
models by exploiting time series of  xyz data on different spatial and temporal scales. A next step
is to substitute the parameters found into the wave function in order to get insights in the quality
of the model and the parameter values. Better parameter values can be obtained by considering
the data in more detail, for example, the mega ripple velocity should be computed by considering
the exact months of acquisition, rather than the years of acquisition. For this article, we have
analyzed interpolated multi beam data. The original data contain much more detail, but when
analyzing these data more attention should be given to the computational efficiency. Also
alternatives for the wave model should be considered.
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