
Marine Sandwave and River Dune Dynamics – 1 & 2 April 2004 - Enschede, the Netherlands

168

Submarine sand ripples formation in a viscous fluid:
2D and 3D linear stability analysis

V. Langlois(1) and A. Valance

(1) Groupe Matière Condensée et Matériaux, UMR 6626, Université Rennes I - 35042 Rennes cedex -
FRANCE

Abstract
We investigate analytically the linear stability of a planar sand bed sheared by a laminar boundary layer
flow in a 2D and 3D configuration. The sand transport is described by a continuum phenomenological
model taking into account the local bed shear stress (calculated from the resolution of the flow over a
deformed sand bed), the grain inertia and the local bed slope. We find that the competition between the
destabilizing effect of fluid inertia and the stabilizing ones of grain inertia and gravity leads to the selection
of a single mode, that is longitudinal (i.e., parallel to the flow direction). The 3D calculation shows that
there exists a band of unstable modes in the oblique direction, which can couple to the main longitudinal
mode in the non-linear regime to give birth to a two-dimensional pattern no longer invariant in the
transverse direction.

1. Introduction
River dunes are structures appearing on river beds made of sand or gravel, i.e. under a unidirectional water
flow. It means that a granular surface sheared by a continuous flow is unstable and can develop regular
patterns. In this paper we investigate the theoretical mechanisms of this instability and derive analytical
equations for ripples growth. The first theoretical works on this instability considered potential flows but
could not account for the instability without adding artificial phase lags between the flow and the bed
profile. Other approaches consisted in solving the turbulent flow over the sand bed. These models are able
to predict the ripple instability but the wavelength evaluation of the resulting unstable modes depends
greatly on the way how the turbulence is parameterised. Recently, Charru (Charru, 2002) showed that the
turbulence is not necessary to get ripple instability. We present here a 2D model, inspired from that of
Charru, where the sand transport takes into account both the bed slope effect and the grain inertia one. The
later is shown to be the preponderant stabilizing mechanism at high particle Reynolds numbers and to
determine the most dangerous wavelength. We also extend the model to the 3D configuration, and show that
oblique modes are unstable and can couple to the most unstable longitudinal mode in the non-linear regime.
As a result, we expect that at the first stage of the instability, a pattern invariant in the transverse direction
first emerges and then evolves towards a “brick” pattern.

2. 2D model equations
We consider a Newtonian and viscous fluid flowing over a deformed sand bed. Outside the boundary layer
this flow is assumed to be unidirectional and uniform. The dimensions of the bed deformation are supposed
to be small compared to those of the laminar boundary layer.

The main assumption is the quasi-stationarity: the flow is calculated as if the bed were fixed. This means
that the flow adapts itself instantaneously to a change of the bed profile. This allows us to solve the
stationary hydrodynamic equations. Within this approximation the flow equations are given by:

ugradugradu ∆+−=⋅ ηρ p)(                                                                                                (1)
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0div =u (2)

and are associated to the following boundary conditions :

0u =)(h                on the sand bed surface (3)

xeu ∞= UL)(         at the top of the boundary layer (4)

where h is the height of the bed profile, L the thickness of the boundary layer and ∞U  is the flow velocity
outside the boundary layer.

The basic state of the flow corresponds to the situation where the sand bed surface remains flat and
horizontal. In that case, the flow velocity profile is given by a simple linear profile:

z
L

zU
zU γ== ∞)(0 (5)

where γ is the shear rate.

The sand bed is described as a continuum. The equilibrium flux of transported grains in a fully developed
state is given by the Meyer-Peter law (Fredsøe, 1992):

( ) 2/3
c

eq Θ−Θ∝q (6)

where Θ is the Shields parameter defined as gds )1(/ −=Θ ρτ ( τ is the shear stress at the sand bed, s the
relative density of the sand in comparison with that of the fluid, d the sand grain diameter and ρ  the density

of the fluid). cΘ is the critical Shields number above which grains start to move. The critical Shields
parameter is found to depend on the local slope of the bed as follows:
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where sφ  is the internal angle of friction and 
0cΘ is a numerical constant corresponding to the critical

Shields number for an horizontal flat sand bed.

A model based on the division of the grains into two separate populations (respectively static and moving
grains), inspired from the BCRE model of granular avalanches (Bouchaud, 1995), is used to account for the
inertia of grains (Valance, 2003). This analysis leads to the expression of the actual flux of grains:
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eql  stands for the characteristic length necessary for a grain to reach the equilibrium with the flow, starting
from an out-of-equilibrium situation. It depends on the drag force exerted by the fluid on the grain and in
the linear approximation sdfl )(Re peq = where f  is a function of the particle Reynolds number Rep  wich
is constant for high values of Rep and scales as Rep for low ones.
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The closure of this formulation is given by the mass conservation of sand grains:
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(9)

The analysis consists in calculating the evolution of a perturbation of the bed of the form:

txkezhtzxh x ω+= i)(),,( 1 (10)

where h1 is a small quantity. Note that the wave number k x characterises the spacing of the crests, the
imaginary part of ω/k x represents the phase velocity of the perturbation whereas the real part of ω
corresponds to its growth rate. It is important to note that equation (9) implies that a perturbation grows only
if the imaginary part of the transport rate q is negative, that is, in particular, if there is a phase lag between
the grain flux and the bed profile.

3. Two-dimensional analysis
We first calculate the flow perturbation over a one-dimensional bed. The calculation strategy employed is
the same as that exposed in (Vittor, 1992) and (Charru, 2000). We will focus here on the situation where the
height L of the boundary layer is much larger than the characteristic length scales of the sand bed
deformation. This calculation leads to an analytical expression of the perturbed Shields number calculated at
the sand bed  to first order in h1 :
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where Ai is the first Airy function, γνβ ν /klk ==  is the dimensionless viscous length, and
3/226/ /)(' ββξξ π ie i −= .

Then  linearizing the equations governing the sediment transport and the bed height, we get a close equation
for the growth rate of the bed perturbation:
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where 
00

/)( 0 cc ΘΘ−Θ=µ . The parameter µ measures the distance from the threshold of grain motion
and will be referred to as the relative shear stress excess.

If we neglect the effects of the gravity (i.e., 2/πφ =s ) and of grain inertia (i.e., 0eq =l ), the real part of
the growth rate ω of the perturbation is given on (Fig. 1). We conclude that the bed is unstable against any
perturbation, and the shortest wavelengths are the most unstable. However, according to the experimental
observations, one particular mode should be selected. That is why we need to introduce stabilizing
mechanisms like gravity and grain inertia. We will first include the gravity effect in the sediment transport.
Second, we will take into account grain inertia effect, neglecting bed slope effect. At last, we will treat the
general situation where both effects are included.
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Fig. 1 – Growth rate for small values of β

3.1 Gravity regime
Setting 0eq =l  in equation (12), the growth rate becomes, in the long wavelength limit ( 1<<β ) :

sφ
β

βµω
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)1(53.0
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3/4 −+∝ (13)

The selection of a particular mode results from the competition between the destabilizing mechanism of the
fluid flow, proportional to 3/4k , and the stabilizing one due to bed slope effect, proportional to 2k . The
order of magnitude of the fastest growing mode is then given by the balance of these two terms. One gets :
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The evolution of maxλ as a function of µ is shown on (Fig. 2). In the case of sand grains in water flow, we

obtain cm0.5max =λ for grains of diameter m 50 µ=d and shear stress excess 1=µ , which seems to be
underestimated in comparison to the available experimental data.

Fig. 2 – Most unstable wavelength vs. relative shear stress excess
(grain inertia neglected).
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3.2 Inertia regime
We neglect here the effect of the bed slope on the sediment transport but take the grain inertia into account,
which is expected to be pertinent when Rep is larger than one. In this case, the growth rate reads in the long
wavelength limit:

3/7eq3/4 9.053.0 ββω
νl

l
−∝ (15)

The grain inertia also plays a stabilizing role for short waves and scales as 3/7k . The most unstable mode is
then given by:

dRef
ρ

ρ
λ g

pmax )(19= (16)

and its evolution as a function of the relative shear stress excess is shown on Fig.3. In the case of sand
grains in water flow and shear rate corresponding to high particle Reynolds number, we obtain

cm9.5max =λ for grains of diameter m 500 µ=d , which seems to be in better agreement with
experiments.

Fig. 3 – Most unstable wavelength vs. relative shear stress excess
(gravity neglected).

3.3 General case
At last, we analyze the general situation where both stabilizing effects are taken into account.

Fig. 3 – Most unstable wavelength vs. particle Reynolds number
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The transition between the gravitational and inertial regimes occurs at a critical particle Reynolds number
Repc which is found to depend on the grain diameter (see on Fig. 3), or more precisely on the Galileo
number (Valance, 2003). As an example, we obtain, in a water flow, 2Re

cp ≈  for grain diameter

of m50µ and 80Re
cp ≈  for grain diameter of m500µ . As a conclusion, the most dangerous mode is

driven by gravity for small particle Reynolds numbers and by inertia for larges ones. There exists a cross-
over regime at intermediate values of pRe .

4. 3D Analysis
4.1 Extension of the model in 3D
We now extend the previous analysis to the three dimensional configuration, i.e., a unidirectional flow over
a two-dimensional deformed bed of the form:

tykxk
ezhtzyxh yx ω++
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)(),,,( 1 (17)

Equations (1-2) with boundary conditions (3-4) can also be analytically solved in the 3D case and the shear
stress at the sand surface can be again expressed in terms of integrals of Airy functions (Langlois, 2003).
The expression for the equilibrium flux of transported grains can be extended to the 3D situation. On the
base of the analysis of Fredsoe et al (Fredsoe, 1992), one can derive the following 3D law for the transport
rate:
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where ),,( zyx nnn=n is the unit vector normal to the sand surface. We recall that ),,( zyx ΘΘΘ=Θ  is
the dimensionless shear stress evaluated at the sand surface. The critical Shields number is found to depend
on the local slope of the bed surface as follows:
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Finally, the mass conservation in the 3D configuration reads

qdiv−=
∂
∂
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h

(20)

For simplicity, we will neglect here the inertial effects so that eqqq = . The inertial effects can also be
included in a 3D model, but this will not be exposed in this paper.

4.2 Results
Using the same strategy as that exposed in 2D, we can derive an analytical expression for the growth rate of
a perturbation of mode k :
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where x1Θ  and y1Θ  are the x and y component of the perturbed dimensionless shear stress and can be
expressed in terms of integrals of Airy functions (Langlois, 2003). From the dispersion relation, one can plot
the stability diagram (see Fig. 5). The left panel in Fig. 5 corresponds to the case where the stabilizing effect
of  gravity is neglected. In that case, arbitrarily infinite large longitudinal wave number kx  are unstable, as
in the 2D situation. The novelty in comparison to the 2D case is the presence of unstable oblique modes
(with 0≠yk ). Taking into account gravity effect (right panel in Fig. 5), one gets a band of unstable modes
of finite width in the longitudinal and transverse direction. The fastest growing mode is found to be on the
horizontal axis: it means that the most dangerous mode is a longitudinal mode (see Fig. 6 where the growth
rate is plotted as a function of the wave numbers k x and k y ). As a consequence, in the first stage of the
instability the sand bed will develop a ripple pattern invariant along the y direction. However, in the non-
linear regime one can expect that the unstable oblique modes will couple with the main longitudinal mode
and gives birth to a 2D pattern where the invariance along the y direction disappears.

      

Fig. 5 – Stability diagram.
(left: without gravitational effect; right: with the gravitational effect).

Fig. 6 – Growth rate for long wavelengths
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5. Conclusion and Perspectives
We presented in this paper a linear stability analysis of a sand surface submitted to a viscous fluid shear in
2D and 3D configuration. The sand transport was described by a continuum model taking into account the
local bed shear stress (calculated from the resolution of the flow over a deformed bed), the grain inertia and
the bed slope. We found that the selected mode (or equivalently the most unstable mode) results from the
balance of the destabilizing effect of the fluid inertia and the stabilizing ones of gravity and grain inertia. In
2D as well as in 3D, the most unstable mode is longitudinal, resulting in the development of a sand pattern
invariant along the transverse direction. The specificity in 3D is the presence of unstable oblique modes
whose dynamics are dominated by the main longitudinal mode  in the linear regime. However they are
expected to couple with the main longitudinal mode in the non-linear regime and give birth to 2D “brick”
pattern. This last result should be checked by a non-linear analysis.
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