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Abstract
A fully non-linear numerical model has been used to perform a linear stability analysis on planar sloping
beaches. One of the main advantages of using a fully nonlinear model is the fact that no simplifications
with respect to the physical formulation has to be made. This paper focuses on the influence of friction and
bed slope on the wavelength, growth and migration rates of the fastest growing mode. The bed
perturbation that has been found in all but one case is an up-current bar with two maxima. From the
stability analysis it is found that an increase in the drag coefficient yields a decreasing wavelength and an
increasing growth rate. Increasing the bed slope results in smaller wavelengths, whereas the growth rate
has a maximum for a bed slope of 1%, irrespective of the friction coefficient. Furthermore, multiple
modes, with different bed perturbations, exist in case of high friction and a small bed slope.

1. Introduction
Rhythmic coastal features have often been observed on both planar and barred beaches and have been the
subject of many studies as well. Rhythmic features like oblique bars, rip channel systems and beach cusps
exist on length scales varying from one to eight times the surfzone width. The time scale at which these
features significantly change is much smaller (of the order of days) than the time scale at which the
underlying cross-shore profile shows a significant change. Different theoretical explanations for the
generation of these observed rhythmic patterns have been given in the literature. One explanation focuses
on the effects of direct hydrodynamic forcing (see Holman and Bowen, 1982), whereas self-organization
in the coupled hydro- and morphodynamic system has been proposed to clarify the observations as well.
This last explanation can be studied by performing a linear stability analysis (LSA).
The first one to study the surf zone morphology with a stability model was Hino (1974). He found down-
current oriented bars with a spacing of about four times the surfzone width xb (the orientation of the bar is
defined with respect to the point of shore attachment). Hino's study was extended by Christensen et al.
(1994) by enhancing the formulation of the physical processes like wave forcing and sediment transport.
Applying a sediment transport relation that depended linearly on the local velocity with a uniform wave
stirring resulted in up-current oriented bars with a spacing of about six times the surf zone width. Ribas et
al. (2003) further extended the previous studies by structurally exploring the influence of the angle of
wave incidence, the parameterization of wave stirring and the formulation of the sediment transport. In
case of a sediment transport relation that depended linearly on the local velocity, and stirring that was
proportional to the squared wave height, representative of wave-dominated beaches, down-flow migrating,
crescentic bar features were found. For angles of wave incidence larger than 5°, the inner bar  was down-
current oriented and the wavelength of the crestentic bars was about the width of the surf zone. For smaller
angles the direction of migration altered, whereas the bed perturbation did not significantly change its
shape.
In the LSA’s mentioned above, many simplifications had to be made to be able to explicitly linearize the
hydro- and morphodynamic equations, e.g. simplifications with repect to the wave forcing and linearized
bottom shear stress. In the study presented here, the stability properties of the surf zone morphology are
studied with a fully non-linear numerical model. No simplifications in the model formulations have to be
made, a wide range of parameters can be investigated and any type of coast can be studied. The method to
determine the most unstable bed perturbation and its growth- and migration rate in a fully non-linear
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model has already been used by Deigaard et al. (1999) and Klein et al. (2002) and will be discussed in
more detail in section 2.
Amonst the parameters studied in Ribas et al. (2003), the sensitivity of r, the ratio of the drag coefficient
and the bed slope parameter, was studied. Increasing r had a damping effect on the results, i.e. smaller
growth rates for larger r, but the alongshore spacing and the spatial structure of the bed perturbation were
hardly influenced by r. However, the two parameters were not studied in separation. In this study the
influence of the drag coefficient and the bed slope parameter on the fastest growing mode are studied in
separation. Furthermore, since a state-of-the-art formulation of the bed shear stress is used, the influence
of the parameterization used in Ribas et al (2003) can be assessed.
Section 2 describes the model formulations and the method used to determine the most unstable mode.
Section 3 presents the results of this study, Section 4 discusses these results and the conclusions are finally
drawn in Section 5.

2. Model formulations and method
Figure 1 presents the orientation of the coordinate system and the definitions of the bed slope β, wave
height H, total water depth D and the position of the breaker line xb.

Figure 1. Definition sketch.

The cross-shore coordinate x is zero on the beach and positive in offshore direction and the alongshore
coordinate is y. The cross-shore current velocity u is positive in offshore direction and the longshore
current velocity v is positive in positive y direction. The still water level is at z = 0. The water motion is
described by the non-linear, depth-averaged shallow water equations, consisting of the momentum
equations and the mass conservation equation, Eqs. 1 and 2, respectively:
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In these equations, u
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 is the current velocity vector, t the time, g the gravitational acceleration, zs the water
level, τ

r
 the bed shear stress vector, ρ the water density, D the total water depth, F

r
 the wave force vector

and ν the turbulent eddy viscosity. The parameterization of Soulsby et al. (1993) for the bed shear stress
due to waves and currents has been used. The eddy viscosity ν has been set to one. Note that the water
motion is only forced by gradients in the radiation stresses. The radiation stresses are computed with the
second generation wave model HISWA, see Holthuijsen et al. (1989) using the formulation proposed by
Dingemans et al. (1987). A consequence of this formulation is that the wave set-down in the shoaling zone
is not computed, since that set-down is caused by wave height variations and not by dissipation. As flow
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boundary conditions the longshore current velocities along the shore-perpendicular boundaries are
prescribed. This has to be done in an iterative way such that the longshore current profile is consistent with
the wave forcing under consideration. On the seaward, shore-parallel boundary a zero water level is
prescribed.
The bed evolves due to convergence and divergence of sediment fluxes, which are computed with a simple
sediment transport formula derived from Bailard's formulation (Bailard, 1981) of bed load transport in
wave-dominated circumstances. This enables us to compare the results with Ribas et al. (2003) who
considered this case as well (by putting m = 1 in their transport formulation). Hence, the sediment
transport relation is the same and reads:
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This formulation accounts for stirring due to short waves and bed slope related transport. The wave
stirring parameter α(x) is assumed to be proportional to the squared wave height. Bed slope effects have
been neglected in this study by setting γ to zero. It has been verified that γ has a damping effect and its
influence on the shape of the bed perturbation is limited.
This system of equations allows for a morphological equilibrium solution Φ  = Φeq, with Φ  = Φ(u,v,D),
when the system is forced with waves, whose characteristics like angle of incidence and wave height do
not vary in longshore direction. This equilibrium state is alongshore uniform, i.e. the bathymetry and the
longshore current v(x) only have a cross-shore structure, whereas the cross-shore velocity u is zero. It is
not clear whether or not this morphological equilibrium is stable. Therefore a LSA is performed. The
equilibrium bed profile is disturbed with a small bed perturbation, periodic in the alongshore direction:
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Here h'(x,y) is the bed perturbation, Ai(x) the complex cross-shore amplitude function, k  the alongshore
wave number, ?  the complex angular frequency (eigenvalue) and i the imaginary unit. The alongshore
wave number can be chosen freely, whereas the cross-shore amplitude function and the complex
eigenvalue are solutions of the eigenvalue problem. The imaginary part (? i) of the complex eigenvalue
represents the growth rate of the perturbation and the real part (? r) the alongshore migration of the
perturbation.
Since the water motion is calculated with a fully non-linear, process-based model a formal linearization
cannot be performed. In order to mimic the linear system, the amplitude of the perturbation should be
chosen sufficiently small, such that non-linear terms are negligible in the equations. In practice this is
realized by choosing a bed perturbation amplitude that is not larger than 1% of the local water depth in the
complete computational domain.
An iteration process has to be used to find the solution with the largest positive real part of the eigenvalue,
i.e. the solution that initially grows fastest. In order to start the iteration process, we need to make a first
guess of the cross-shore amplitude function of the perturbation. It was verified that the final solution is
independent of the initially chosen cross-shore amplitude distribution. During every iteration the cross-
shore amplitude function Ai, which only contains the bed perturbation related to the wave number k, is
derived using a Fourier analysis. This amplitude distribution is rescaled such that the amplitude is again
smaller than 1% of the local water depth. Based on the previous cross-shore amplitude Ai-1(x) of the
perturbation and the newly computed one, Ai(x), an estimate for the complex eigenvalue ?  is obtained.
This estimate is based on the Rayleigh quotient (Griffel, 1985):
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in which * denotes the complex conjugate. This Rayleigh quotient is an estimate of the eigenvalue with
largest real part. The problem has been defined such that the real part of the Rayleigh quotient corresponds
with the growth rate. By repeatedly determining the Rayleigh quotient in an iterative process, the
eigenvalue can be exactly determined. By constructing a new perturbation for every iteration step, based
on the results of the last iteration, the estimated eigenvalue will converge towards the exact eigenvalue.
The accuracy criterion for convergence has been set to 0.5%, i.e. if both the real and imaginary part of the
eigenvalue change less than 0.5%, the iteration process is assumed to have converged. In that case, Ai(x)
gives the cross-shore structure of the eigenfunction.
Note that this iteration process is only done for one wavelength. For that specific wavelength one mode is
found, the one with the largest growth rate. Repeating this process for a range of the wavelengths, a
maximum growth rate can be identified. The mode with this wavelength is the fastest growing mode
(FGM). The stability analysis has mainly been performed for wavelengths that are a multiple of 100 m.
The model and the method that have been used limit the wavelengths that can be considered. The model
domain measures 6×1.2 km2 divided in 10×10 m2 grid cells. The domain of analysis is at least 1 km or one
wavelength away from the model boundary. In order to be able to consider wavelengths smaller than about
200 m, the model should consist of smaller grid cells than have been used now. The computational effort
does not allow for such a change. On the other hand, wavelengths larger than about 1200 m (depending on
the drag coefficient) cannot be considered in this model since disturbances from the model boundary enter
the area in which the Fourier analysis necessary to determine the FGM is performed.

3. Results
In this section the results of the LSA are presented. All results are obtained with θb = 10°, Hs = 1.1 m and
γb = 0.8. These wave conditions are representative for the yearly-averaged wave conditions along the
Dutch coast. Furthermore, ν = 1 m2s-1, α(x)=0.01H(x)2, cd = 0.0025 and β = 0.01. These values are the
default values and have been used in the reference case. In the following, the influence of the friction
coefficient is investigated. Values of the drag coefficient used are 0.0020, 0.0025 and 0.0035. These
friction values range from a 'normal' value (0.0035) to a rather low value (0.0020). Furthermore, the
influence of the bed slope on the results is presented. Bed slopes considered are 0.0075, 0.01 and 0.0125.
These values for the slope are reasonable values for many coasts, such as the Dutch coast, although much
steeper coast exist as well, like the Duck coast. An overview of the experiments that have been performed
and the results regarding the growth rate ωi, migration celerity c and the wavelength λp of the FGM of
each set of experiments are summarized in Table 1. The migration celerity has been obtained by dividing
the migration rate ωr by the wave number k .

Table 1. Performed experiments and their summarized results
β

0.0075 0.01 0.0125
0.0035 λp1 < 250 m

ωi > 4.55e-6 s-1

c < 0.0008 ms-1

λp2 = 660 m
ωi = 3.67e-6 s-1

c = 0.0010 ms-1

λp = 650 m
ωi = 3.99e-6 s-1

c = 0.0011 ms-1

λp = 550 m
ωi = 3.94e-6 s-1

c = 0.0011 ms-1

cd 0.0025 λp = 800 m
ωi = 2.60e-6 s-1

c = 0.0011 ms-1

λp = 700 m
ωi = 2.96e-6 s-1

c = 0.0012 ms-1

λp = 600 m
ωi = 2.91e-6 s-1

c = 0.0012 ms-1

0.0020 λp =1000 m
ωi = 2.05e-6 s-1

c = 0.0012 ms-1

λp = 900 m
ωi = 2.36e-6 s-1

c = 0.0013 ms-1

λp =800 m
ωi = 2.18e-6 s-1

c = 0.013 ms-1

3.1 Equilibrium state
Figure 2 presents the bed level zb, water level η , the root-mean-square wave height Hrms and the longshore
current velocity profile v(x) corresponding to the equilibrium state. Besides, the Longuet-Higgins
longshore current velocity profile corresponding to the applied forcing is plotted as well. In this
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experiment, the default parameters were used. Since HISWA uses irregular waves, Hrms instead of H is
plotted. Due to the irregularity of the waves, the longshore current velocity profile is smoother than the
Longuet-Higgins profile.

Figure 2. RMS wave height (left panel) and water level and longshore current velocity corresponding to
the equilibrium state (right panel). The corresponding Longuet-Higgins profile is plotted as well.

3.2 Reference case
In this section the linear stability of a beach using the reference characteristic parameters is investigated.
For a range of alongshore wavelengths the spatial structure and the corresponding growth rates and
migration celerities have been determined. Figure 3 presents the growth rate ωi and the migration celerity
c vs. the wavelength. One can clearly see that there is a maximum growth rate at λ = 700 m. This mode is
designated as the fastest growing mode (FGM). Also the migration celerity has a maximum value,
although its maximum does not occur for the FGM but for a mode with a smaller wavelength.
The bed and flow perturbations of the FGM of this reference case are presented in Figure 4. It clearly
shows that the bed perturbation is a crescentic feature, with an up-current oriented inner bar. The line of
maximum wave energy dissipation has been drawn as well, as a measure for the surf zone width. It is clear
that the bed perturbation shows a maximum both inside and outside the breaker zone. The wavelength of
the FGM is about three times the surf zone width.

Figure 3. Growth rate vs. wavelength (left panel) and migration celerity vs. wavelength (right panel).

3.3 Influence of the drag coefficient
From Table 1 it is clear that an increase in the drag coefficient leads to a decrease in λp, whereas the
growth rate increases. The migration rate increases with decreasing friction. The bed shear stress hardly
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has an influence on the spatial structure. The bed perturbations are very similar to the bed perturbation of
the reference case, see Figure 4.

Figure 4. The bed and flow perturbation corresponding to the FGM of the reference case. Solid contours
are shoals. The solid, straight line indicates the location of maximum wave energy dissipation.

3.4 Influence of the bed slope parameter
From Table 1 the influence of the bed slope parameter can be summarized as follows:

• The dependence of the growth rate on the bed slope is persistent for the three considered friction
cases, viz. growth rates are largest for β = 0.01, and smaller for β = 0.0075 and 0.0125. Note that
this is also true for β = 0.0075 and cd = 0.0035, when considering the bed perturbation with λ =
660 m. This will be discussed in more detail below.

• Although the influence of the bed slope on the migration celerity is rather limited, the migration
celerity increases with increasing bed slope.

• The smaller the bed slope, the larger the wavelength. Despite variations in the breaker zone width
due to variations in the bed slope, λp is three to four times the surf zone width.

The bed slope parameter has, like the bed friction, hardly any influence on the shapes of the bed
perturbation which are very similar to the one of the reference case, displayed in Figure 4.
In case of cd = 0.0035 and β = 0.0075 two local maxima in the growth rate have been found for λ = 570
and 660 m, see Figure 5. For wavelengths smaller than 500 m the growth rate increases with decreasing
wavelength, without finding a maximum in the wavelength range considered. When looking at the bed
perturbations (Figure 6) corresponding to λ = 300 m and λ = 660 m, one can see that the bed perturbations
of these two cases differ. The larger wavelengths have two maxima, whereas the perturbations with
smaller wavelengths only have one.

v
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Figure 5. Growth rate vs. wavelength (left panel) and migration celerity vs. wavelength (right panel) in
case of cd = 0.0035 and β = 0.0075.

Figure 6. Bed perturbations in case cd = 0.0035 and β = 0.0075 for λ = 300 m (left panel) and λ = 660 m
(right panel). The longshore current is directed in positive y direction.

These two different spatial structures are very similar to the spatial structures of the first and secondary
mode (A1 and A2) found by Ribas et al. (2003), except for the orientation of the inner bar, which is up-
current in the present study but down-current in Ribas et al. (2003). Also the perturbed velocity fields of
the two wavelength cases differ, although the differences exist on a detailed level. Both observations
suggest, however, that different modes have been found, also for λ = 570 m. Due to the wavelength
limitations of this model (i.e. the numerical constraints discussed at the end of section 2) this suggestion
cannot be proved yet.

Discussion
In general we can state that the growth rates found in the present study are about four times smaller than
the ones obtained by Christensen et al. (1994). They, however, used a different breaker wave height (3 m)
and a different bed slope (0.04). In order to compare the absolute values of the growth rate with the ones
obtained by Ribas et al. (2003) a scaling with a morphological time factor needs to done. This is left for
further research.
In Ribas et al. (2003) the instability mechanism is described. In case of a linear sediment transport relation
and a stirring that is proportional to the squared wave height, they showed that the growth of a shoal in the
surf zone needs an onshore directed current, whereas the growth of a shoal outside the surfzone needs an
offshore directed current. When looking at Figures 4 and 6, one can clearly see that the perturbed flow
field corresponds with these theoretical considerations. Hence it can be concluded that the instability
mechanism is reminiscent of the mechanism described in detail in Ribas et al. (2003).
In Ribas et al. (2003) it is suggested that the results only depend on the ratio of cd and β. However, varying
both cd and β in such a way that their ratio does not change does not yield similar results: The FGM
corresponding to cd = 0.0020 and β = 0.01 differs considerably from the FGM corresponding to cd =
0.0025 and β = 0.0125 regarding wavelength λp as well as growth rate ωi and migration celerity c.
However, at this moment the model formulation as used in Ribas et al. (2003) and the formulation used in
this paper differ considerably (i.e. different formulation of the bed shear stresses and wave forcing).
Therefore, the influence of the difference in formulation on the observed FGM will be investigated in
more detail in the near future.
The effect of friction on the wavelength λp is quite evident. The larger the friction, the smaller the current
velocities, the smaller inertia effects are and thereby reducing, as suggested by both Deigaard et al. (1999)
and Klein et al. (2002), the longshore spacing of the rhythmic pattern. The same holds for the migration
celerity. The influence of friction on the growth rate, however, is less evident. Since the velocities are

v v
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higher for smaller friction, one would expect larger growth rates for smaller friction. We, however, find
opposite results.
The bed slope does not only influence the current velocity directly by changing the relative importance of
friction, but it also influences the wave forcing. Waves break in a more concentrated zone on a steep slope
than on a mild slope. From the results it appears that the steeper the slope, the narrower the velocity profile
and the higher the maximum velocity. Reasoning from inertia one would expect larger wavelengths for
steeper slopes, but again the results show the opposite behaviour. Furthermore, the occurrence of a
maximum in the growth rate for a bed slope of 1%, irrespective of the drag coefficient is remarkable. Two
opposing mechanisms seem to be present causing this behaviour. These two mechanisms might also be
responsible for the dependence of the growth growth rate on the drag coefficient and the dependence of
the wavelength on the bed slope. These mechanisms, however, have not yet been identified.

Conclusions
The linear stability of planar sloping beaches has been studied with a state-of-the-art numerical model,
with the focus on the influence of bed friction and bed slope. Up-current bars with a longshore spacing of
three to four times surf zone width have been found in all but one case. In case of high friction and a mild
slope, three modes have been found.
Increasing friction results in smaller wavelengths and smaller migration celerities. Both observations can
be explained in terms of inertia. The growth rate increases with increasing friction. As to variations in the
bed slope parameter, increasing the bed slope results in smaller wavelengths and in larger migration
celerities. These smaller wavelengths cannot be explained from inertia considerations, whereas the
migration rates can, since the maximum current velocity increases with increasing slope, yielding larger
sediment transport rates that enable faster migration. The growth rates show a maximum for a bed slope of
1%. Both the influence of the friction parameter on the growth rate and the sensitivity for bed slope
variations are currently under investigation.
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