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Abstract
Bedform evolution remains dynamic even in the special case of steady, uniform flow.  We describe such
interactions between bedforms with data collected in the laboratory and a river.  The kinematic data is
used to motivate development of linear and nonlinear advection-diffusion models depicting development
of topography at the sediment/fluid interface.  Many qualitative features of bedform behavior are
observed, but important properties such as the dispersion that controls bedform splitting and merging are
not accurately reproduced.  Limitations of the one equation models point to the necessity of including a
second equation that explicitly treats sediment transport. The BCRE equations, originally developed for
grain avalanches, are presented as a viable model for investigating the transient behavior of bedforms.

1. Motivation and philosophy
Observations collected in natural systems and laboratories demonstrate that bedforms are capable of
generating their own internal dynamics due to the complex feedback between the flow and sediment-
transport fields and the evolving surface topography.  This dynamic manifests itself as a natural variability
in bedform height, length, and celerity, merging and splitting, even when the topography is developing
under what would otherwise be steady and uniform flow conditions.  These internal adjustments are well
known qualitatively (e.g., Allen 1973) but have received relatively little quantitative treatment by the
scientific community.  Instead, a great deal of attention has been given to development of algorithms
relating mean flow and transport properties to mean bed topography (e.g., Yalin, 1964; Fredsoe, 1982;
van Rijn, 1984).  Such models serve as useful ‘rules of thumb’ describing average bedform properties,
particularly height, length and celerity, but cannot be used to explore the interactions between bedforms
that in fact determine their mean properties.  An incomplete understanding of how irregular bed
topography controls turbulence production and how this turbulence affects the local sediment transport
precludes development of a bedform evolution model from first principles.  While this result may seem
discouraging, it has motivated us to develop new types of models aimed at reproducing the interacting
topography.  Bedforms are ubiquitous, occurring in subaerial, fluvial marine and submarine environments,
and generated under a wide spectrum of flow and sediment-transporting conditions.  It is clear a train of
bedforms is a fundamental instability of the interface between fluid and sediment, and may therefore be
only weakly dependent on the details of a particular system.  One may wonder then if it is possible to treat
the evolution of the fluid/sediment interface as a function of its shape alone by adapting generic interface
equations.

Our analyses of topographic data capturing bedform evolution in time and in space reveal an
extreme sensitivity to boundary conditions.  In other words, the translation and deformation experienced
by any given bedform strongly depends on the local configuration of the surface topography or interface.
These data are derived from a 0.2m wide laboratory flume (Jerolmack and Mohrig, submitted to J. of
Geophys. Res., hereafter referred to as Jerolmack and Mohrig, in review) and the North Loup River,
Nebraska, USA (Mohrig, 1994; Mohrig and Smith, 1996).  In both cases the subaqueous bedforms are
composed of medium sand.  Time series of topography from each environment are presented in Figure 1.
Transient behavior of topography developing from two original bedforms is shown in Figure 1a.  These
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stacked profiles record intervals of bedform translation, punctuated by deformation cascades during which
bedforms undergo rapid splitting with highly variable celerity.  All of this behavior is associated with a
steady fluid discharge.  The differences in bedform activities correspond to relatively subtle changes in
interface geometry.  In particular, minor changes in configurations of bedform troughs were found to
increase local turbulence production by as much as five times (Jerolmack and Mohrig, in review).
These differences in turbulence affected the sediment transport and subsequent bedform topography.
Sequential profiles from the river bottom shown in Figure 1b record variability in bedform behavior
comparable to that observed in the laboratory.  In this time series the bed elevation scales with grayscale
intensity.  Crests and troughs of bedforms are relatively bright and dark, respectively.   Tracing crest lines
through time and space provides a quantitative measure of celerity.  Bifurcations and terminations of crest
lines represent the splitting and merging of individual bedforms, respectively.  This 30m transect of river
bottom has three distinct zones.  A zone of high bedform activity from 8m to 15m at t = 0min separates
two sections of lesser activities.  In these two sections bedforms migrate with a mean celerity of 3cm/min
and there is little change in their number through time.  In the intervening zone the bedforms migrate with
a mean celerity of 7cm/min and there are many bifurcations and terminations.  Capturing these styles of
variable behavior, as well as the discrete interactions between adjacent bedforms, is the motivation for our
considering the evolving topography as an interface problem.

Figure 1. (a) Evolution of two laboratory dunes shown in profile.  Dashed lines connect the same bedform
crest on successive profiles.  Beginnings and endings of dashed-lines mark the splitting and merging of
individual bedforms, respectively.  (b) Successive profiles for a train of bedforms in the North Loup
River, NE, USA.  Each profile is mapped in grayscale with brightness increasing as a function of
elevation.  Darkest and lightest coloring is correlated with the troughs and the crests of bedforms,
respectively.  Migration rates of individual bedforms are recorded as the slopes to the lines connecting
their troughs and/or crests through space and time.  Horizontal white bars mark missing data.
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2. Bedform kinematics as an evolving interface
2.1. Describing bedforms using an advection-diffusion equation
We now proceed with a heuristic development for a model capturing the essence of bedform behavior.  In
order for this model to be considered successful it must at the very least provide meaningful descriptions
of the following properties: 1) cross-sectional geometries for trains of bedforms; 2) splitting of unstable
topographic elements into two or more bedforms; 3) merging of elements into single bedforms; and 4)
natural variability in rates of bedform migration.  We begin here by exploring the capability of an
advection-diffusion equation to capture these necessary behaviors.  A significant advantage of describing
evolving topography with such an equation is that the shape of the bed at any given time completely
determines the shape of the bed at the next time step.  In this framework the evolutions of individual
bedforms are specifically functions of bed slope, curvature and elevation.  Characteristics of the flow and
sediment transport acting to transmit information from one point to another are reduced to a small,
interpretable set of coefficients and exponents.

Exner (1925) presented the first relevant description for the advective component of bedform
evolution.  Based on continuity arguments he demonstrated that the translation and deformation of a
topographic perturbation can be described by
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where z is elevation, x is horizontal distance, ∂z/∂x is the interface slope, t is time, Λ is celerity or
advective velocity of the interface [L T-1], h is flow depth, B is a coefficient, and n is an exponent that can
vary between 1/2 and 2 depending on the chosen transport relation. Equation 1 describes an elevation-
dependent advection of topography.  With this equation an original bump with Gaussian-distributed
elevation becomes skewed in the direction of transport.  The resulting asymmetry increases through time
producing an ever lengthening overhang to the lee face of the topographic element.  This unrealistic
development can be mitigated by adding a diffusive term to the interface equation.  This new term acts to
damp topography by reducing curvature.  Its inclusion is supported by observation of active bedforms in
the lab and field documenting a diffusive component to their behaviors, especially when merging.  The
most general advection-diffusion equation (ADE) for the interface is then
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where Φ is diffusivity [L2 T-1],  ∇2z is curvature [L-1], and η(z, t) is a topographic source term.  Here we
have calculated curvature in either one (1D) or two (2D) dimensions, depending on the domain, while
always restricting advection to the specified streamwise direction.  Equation 2 is dissipative for Φ  > 0 and
cannot grow topography from an originally flat surface when <η(z, t)> = 0.  To explore the development
of topography described by variants of this equation we seed the solution matrix with an initial
topography and monitor its transient evolution via numerical integration of (2).  Resulting examples of 1D
and 2D topography are presented in Figure 2.

The value for Λ in Equation 2 can be either a constant, yielding the linear ADE, or a function of
topography.  Making Λ an explicit function of elevation, where Λ = λ z and λ is a constant [T-1], yields the
well-studied nonlinear ADE typically called the Burgers equation.  This equation was originally proposed
to describe the velocity field for simplified 1D turbulence (Burgers, 1974) and has subsequently been
used to model interface growth (Medina et al., 1989), traffic (Nagel 1996) and other systems.  We use
Burgers equation as our model nonlinear ADE, noting that it is essentially Exner’s (1925) expression for
bedform evolution (1) with a diffusive term added to it.

2.2. Linear advection-diffusion equation
Equation 2 with Λ = constant provides a description of transient bed evolution that does not capture any of
the bedform activity we are interested in studying.  In particular this expression generates none of the
interactions between topographic elements that can be interpreted in the context of bedform splitting and
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merging.  Seeding a matrix with high-amplitude random topography and monitoring its development by
numerically integrating (2) produces a series where every point in the bed profile translates downstream
with a velocity Λ while the curvature to topography is systematically reduced at a rate controlled by Φ .
An example of this style of bed evolution is shown in Figure 2b.  While not useful for exploring bedform
interactions, we found the linear ADE to be helpful tool when analyzing topographic data sets.  We
calculated slope and curvature for all 66 bedform profiles shown in Figure 1b.  Successive profiles were
then differenced to find elevation change at each point as a function of time and local values for Λ and Φ
were back calculated using (2).  Resulting distributions of each parameter yielded a central value for Φ
that was between 1 and 2 orders of magnitude smaller than the central value for Λ.  With these values for
Λ and Φ in hand a very simple set of forward calculations can be performed that begin to quantify rates of
translation versus deformation in the system.  This forward-looking description for bedform topography
neglects Φ  and uses the median value of Λ to forecast from one time step to the next.  Differences
between the predicted and measured profiles at that step allow us to quantify how much of the profile
evolution is attributable to ‘steady-state’ translation versus irrecoverable deformation.

2.3. Burgers equation
Equation 2 with Λ = λz provides a description of transient bed evolution possessing many aspects of
bedform activity we are interested in studying.  Seeding a matrix with high-amplitude random topography
and monitoring its development by numerically integrating (2) produces a series where the initial bumps
migrate at different speeds depending on their height, and merge irreversibly due to diffusion.  Within a
short time, asymmetric ‘bedforms’ are generated with variable wavelengths.  By additional mergers the
bedforms become increasingly periodic with time and achieve a characteristic wavelength at long time.  In
2D these features are sinuous-crested and form coherent structures that may occupy the entire cross-
stream width of the domain (Fig. 2a).  Since (2) is dissipative the bed eventually decays to a flat surface if
no additional forcing is added to the system.

We can now add a low-amplitude white noise, <η(z, t)> = 0, and examine bed evolution in the
noisy case.  The noisy Burgers equation has been explored by several researchers (e.g., Fogedby, 1999)
who have found that the additional roughness associated with even very-low amplitude noise preserves
transients over substantially greater time intervals.  This is because diffusion acts on the local curvature
and preferentially dissipates the noise topography, thus preserving larger waves.  Interestingly, noise
enhances wavelength variability even though its amplitude is much smaller than the resultant waves.
Amplification of noise by the nonlinear advection term generates this increased variability in the system.

Figure 2b compares the profile evolution described by a linear ADE, Burgers equation and a noisy
Burgers equation for an initial sinusoidal profile.  In the case of Burgers equation each topographic
element skews in the direction of transport and develops a smooth shock, forming a breakaway head that
migrates away from the rest of the body.  If diffusion is small, several generations of breakaways may
occur before all elements reach such low amplitude and/or slope that further development of smooth
shocks is inhibited.  With addition of noise, we see the same general pattern; however there are bedforms
of different wavelengths on the “backs” of larger bedforms, and evolution is much more variable.  This
noisy Burgers case bears qualitative similarities to Figure 1a.
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Figure 2. Bed topography generated by reported advection-diffusion equations. Equations integrated using
a two-step Lax-Wendroff method. Boundary conditions are periodic in all plots. (a) Topographic map at
t=1000 generated by 2D Burgers equation from random initial topography. Elevation increases with
brightness.  Transport is from top to bottom of domain; grid is 50×200. (b) 1D evolution of sinusoidal
topography (dotted lines) with linear ADE (top), Burgers (middle) and noisy Burgers (bottom) at t=1000.
Advection from left to right, domain length is 200. Anomalous bedform shape at t=1000 is due to a
mismatch of the left and right domains at the initial condition.

3.  What have we learned, and what are we missing?
We will first comment on insights gained from using the Burgers equation.  Bedform-like topography
‘self organizes’ from random initial topography under all conditions and the process of merging appears
realistic.  Bedforms skew naturally in the direction of migration and can split as they become unstable.  It
is difficult to obtain a bedform field that focuses splitting in some regions and merging in others (Fig. 1b),
but we guess that with a more sophisticated treatment of coefficients, i.e. diffusivity varying as some
function of elevation rather than being constant, we may obtain even more interesting behavior from this
single equation.  Burgers equation produces topography with sinuous crest lines, bifurcations and defects
(Fig. 2a).  These strikingly realistic geometries are not specified a priori.  Bedform spacing is generally
quasi-periodic with some inherent variability.  The introduction of a noise term enhances this variability.
Another attractive feature of this simple model is that reversing (oscillatory) and combined flow transport
can be treated easily and reasonable looking topography is generated.  Many salient characteristics of
bedforms are reproduced by treating the bed simply as an interface that evolves as a function of its
elevation, slope and curvature.

We recognize that there are major deficiencies in the one-equation description of bed evolution.
First off, the model equation is dissipative and bedforms are not self-sustaining.  The model equation
cannot grow topography, rendering it incapable of treating bedform initiation.  Predicted dispersion, the
relationship between celerity of waves and their size, is unrealistic.  With a linear ADE there is no
dispersion relation, all topography simply translates at the same speed.  In Burgers equation points of
higher elevation move faster, making celerity proportional to bedform height (H).   This relationship is
exactly opposite of anticipated relationship for natural bedforms (Raudkivi and Witte, 1990).  While in
natural systems Λ ~ 1/H may not hold strictly (e.g., Carling et al., 2000), it is not encouraging that our
dispersion relation is opposite of that observed in most laboratory experiments and predicted by the
conservation of sediment mass.  What are we missing?
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The well-known dispersion relation, Λ ~ 1/H, is derived by integrating sediment flux over one
entire bedform and assuming equilibrium topography.  This leads us to suspect that we need to treat
sediment transport explicitly to obtain the proper dispersion relation in our model.  This may also allow us
to build topography from scratch.  The BCRE equations originally proposed by Bouchaud, Cates, Ravi
Prakrash and Edwards (1995) to model grain avalanches have been recently adapted to study additional
types of granular flows, including wind ripples and dunes (Terzidis et al., 1998).  The model treats two
species of grains; a static or immobile layer, which is our normal bed elevation, and a thin overlying layer
of mobile grains with thickness ℜ [L].  Immobile grains can be converted to mobile grains, causing a local
decrease in elevation, or mobile grains can be deposited and contribute to an increase in height.  The
BCRE equations are
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where ν is advective velocity of the mobile grains [LT-1].  The equations are coupled, and (3) is nonlinear.
Stability of these equations has been treated extensively in the physics literature, but the range of behavior
they produce has not been exploited, nor have they been specifically adapted for subaqueous bedforms.
The generality of the equations is appealing.  Noting that νℜ [L2 T-1] has the dimensions of sediment flux,
it can easily be shown that (4) is exactly the well-known Erosion Equation (Exner, 1925).  The difference
here is that the shape of topography is now explicitly accounted for when determining the change in
elevation.  All terms in the equations can be motivated physically, and the limited number of parameters
gives us hope that the coefficients can be related to measurable characteristics of bedform systems.  We
are just beginning to explore and modify this model to study evolution of subaqueous bedforms, but initial
results show that bedform initiation can be treated and that a proper dispersion relationship is recovered.

4. Conclusions
We began by making a case for the importance of transient bedform behavior and recognizing that
existing models cannot account for the widely variable kinematics we observe in laboratories and in the
field.  Bedforms are constantly adjusting, so characterizing the manner in which they adjust is at least as
important as characterizing asymptotic geometry under relatively steady and uniform conditions.  For
example, forecasting stage-discharge relationships requires an understanding of rates and pathways of
bedform (i.e., roughness) evolution.  Accurate descriptions of variability are important if we wish to
reconstruct paleohydraulic conditions from stratification produced by bedforms and preserved in
sedimentary deposits (e.g., Paola and Borgman, 1991).  Trains of bedforms are a model example of
systems capable of generating their own internal dynamic from steady external forcing.  We motivated
development of an advection-diffusion approach on phenomenological grounds using the classic bedform
migration equation proposed by Exner (1925).  Physicists have used Burgers equation, a nonlinear ADE,
to describe many interfaces and we attempted to treat bedform evolution using this one-equation model.
Several qualitative features of bedforms were reproduced, showing that some bedform behavior is
characteristic of generic nonlinear waves.  A second equation to explicitly treat sediment flux was sought,
which again had already been developed within the physics community in the form of the BCRE
equations.  Earth scientists and engineers have yet to exploit these equations, which may represent the
minimum model necessary to describe bedform initiation and subsequent interactions.  The coupled
equations (3) and (4) are capable of producing much of the behavior not present with Burgers equation
alone.  We are optimistic that a BCRE-type model will provide a framework to examine features common
to all bedforms – aeolian, fluvial, marine and submarine.  Finally, we encourage communication between
earth scientists, engineers and physicists, as we are often unaware of theoretical developments in interface
science, and physicists are often not aware of the data and insight accumulated from decades of examining
this deceptively simple problem.
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