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1 INTRODUCTION 

The surface of some planet’s present 
abundant periodic topographic forms at 
different scales (mm- km) in different 
environments called bedforms. These 
bedforms develop at the interface between 
the moving fluid and a deformable and/or 
erodible material. The aeolian bedforms 
result from wind action mainly in deserts, 
coastal areas (Pye and Tsoar, 2009; Zheng et 
al., 2022). Sand dunes correspond to a major 
bedforms type in aeolian systems and play an 
important role in understanding how aeolian 
environments evolve. They are described as  
aeolian sand mounds or ridges that exist 
independently of surrounding topography 
whether slipfaces are visible or not (Bagnold, 
1974).  

Generally, the dunes are grouped in field 
and sand seas. Their morphological 
characteristics (e.g. shape, size, spatial 
organization)  play a critical role in  
understanding how aeolian environments 
evolve and interact with global changes 
(Thomas and Wiggs, 2008; Zheng et al., 
2022).   

The wide spatio-temporal coverage of 
satellite imagery and high-resolution digital 

terrain models are used to estimate and map 
the evolution of dunes on large-scale 
investigations. A large-scale dune mapping 
would provide a digital atlas to characterize 
variable sand dune morphologies that are 
crucial indicators of complex and evolving 
wind processes. In this work, we propose an 
automatic method of aeolian dunes mapping 
from DEM based on a Deep Learning 
approach which allows an instantaneous, 
massive and integrated extraction of several 
geometrical properties of each dune - from 
metric to regional scale.  

The prevailing strategy is to extract the 
Residual Relief (RR, Hillier and Smith, 
2008) in order to delete the regional 
topographic trend and map the different dune 
generations. Secondly, an unsupervised 
pixel-based classificator (Deep Learning – U-
Net (Shumack et al., 2020)) trained with RR 
samples of different dune forms is used to 
detect and map dunes independently of the 
bedrock. Finally, the crestline of the sand 
dunes is skeletonized from the identification 
of high inflection point of the dunes with a 
Volumetric Obscurance approach (Rolland et 
al., 2022). The complex morphologies with 
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various forms are individualized according to 
the neighborhood relationships of the dune 
forms and crest.  

To illustrate the method performance, the 
protocol is applied on a part of the Rub’Al 
Khali (660,000 km²) sand sea to map the 
various dune forms and extracts their 
crestlines. Then, we use this large digital 
database to illustrate an example of 
morphometric application by calculating 
basic geometrical properties (length, width, 
height of dunes and crestlines orientation). 

2 NUMERICAL DUNE DEFINITION 

Sand seas are the fullest expression of 
aeolians landscapes, being defined by a 
variety of shapes in which sand grains have 
accumulated by wind to make sand mounds 
called “dunes” (Livingstone and Warren, 
2019; Lorenz and Zimbelman, 2014). The 
overall forms of dunes depends on the wind 
speed in the area, the duration of sand-
transporting winds, the direction of the wind 
speed, the duration of sand-transporting 
winds, the direction of the winds and their 
variability (Blumberg, 2006; McKee, 1979).  

Many freely available land surface remote 
sensing data provide a large dataset of high-
resolution imagery and digital elevation 
models (DEMs). These latter are widely used 
for aeolian systems investigation because of : 
i) their large spatial coverage (covering all 
major dune fields in the world) and ii) their 
always increasing spatial resolution 
(Hugenholtz and Barchyn, 2010). Dunes can 
be interpreted on DEMs as three-dimensional 
bedforms characterized by high inflection 
points (dune crests) and low inflection points 
(dune base – dune shape) whether their 
slipfaces are visible or not (Fig.1).  

  

 

 

 

 

 

Figure 1. Dune definition. A. Naturalist representation 
of dune based on Bagnold (1974) descriptions. B. 
Numerical representation of a dune on a DEM as a 3D 
bedforms defined as high (dune crest) and low (dune 
shape) inflection points. 

3 MAPPING PROTOCOL 

3.1 Extracting and sampling Residual 
Relief  

Dune fields and sand seas show 
superimposed generations of dunes (m to km-
scale) producing complex topographic signal 
on DEMs (Fig.2). Each dune scale patterns 
can be examined independently if the 
topographic signal is disentangled 
(Hugenholtz and Barchyn, 2010).  

 

 
Figure 2. An example of Residual Relief separation 
showing discrimination of different dune generations. 
The original surface (black line), the Residual Relief 
of the medium-scale dunes (dotted black line), and the 
Residual Relief of small-scale dunes (grey line) 
(Hugenholtz and Barchyn, 2010). 
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Our strategy is to separate and isolate the 
different dune scales in order to highlight the 
aeolian dune patterns in dune field. For this, 
we calculated the Residual Relief (Hiller and 
Smith, 2008) on 100 training samples that are 
then used as learning data to map the dune 
shapes. Each sample represent a DEM on 
which dunes are identified (Fig.3A). These 
samples are selected from four arid regions 
and cover a large range of dune types 
(barchanoid, star, dome, linear and complex 
dunes). For this first development, we have 
avoided dune classifications to simplify 
mapping and interpretation. Dunes outlines 
were digitized manually on a GIS software 
and labelled as “ground truth” for the next 
step (Fig.3B). 

3.2 Forms dunes recognition with Deep 
Learning 

In this step, we used a Deep Learning 
algorithm as an unsupervised pixel-based 
classificator to form a mapping model of the 
aeolian dunes shape (Shumack et al., 2020).  

All 100 residual relief samples from the 
DEMs were used by the algorithm as training 
data. First, the pixels DEM are convolved. At 
each convolution, for each DEM pixel that is 
located in a sliding matrix or kernel, the pixel 
values are multiplied by the kernel values. 
The sum of the matrices products generates 
an image of smaller dimension for which the 
maximum pixel values contained in the 
ground truth mask labelled are considered as 
“dune”.   

After the convolution, a max-pooling 
operation is used to retain the maximum 
values associated with the pixel labeled as 
“dune”. All max pooling operations are 
subsequently reversed by a series of 
transposed convolutions, ending with an 
image matching the original input size 
(Ronneberger et al., 2015; Shumack et al., 
2020). Lastly, the different convolutional 
steps are concatened and subject to more 
convolutions. The last step consists to use an 
activation function allowing to create a 
mapping model in which, each pixel 
corresponding to the dunes on an analyzed 

DEM is predicted and assigned by a “dune” 
class (Fig.3C). 

 

 
Figure 3. An example of mapping after the 

unsupervised classificator training on a DEM sample. 
A. Residual Relief. B. “Dune” ground truth mask 
manually digitised and used for the unsupervised 
classificator training. C. Output map after model 
calculation. The white area corresponds to 
automatically mapped dunes. 

 
The accuracy assessment of our mapping 

model is performed on 20% of the training 
samples randomly selected as a validation 
subset. After the learning, the mapping model 
is evaluated with the classical metric: 
precision, recall and quality (Bianchi et al., 
2021; Lewington et al., 2019; Telfer et al., 
2015). These metric equations are based on 
the overlap prediction of the validation subset 
compared to the training manual map used 
like “ground truth”. 

3.3 Crest dunes skeletonization  

The crestlines extraction is based on the 
Volumetric Obscurance algorithm (Rolland 
et al., 2022). The tool calculates for each 
pixel on a DEM the ratio between the volume 
below and above the topography in a sphere 
of a given radius centred at a given point of 
the topographic surface (Rolland et al., 
2022). This process amplifies the pixel values 
on a DEM. Thus, the high inflection point 
pixels as being associated at the crestlines are 
accentuated favoring their recognition. 

The output raster is reduced to a branched 
skeleton from the identification and 
digitization of high inflection points 
corresponding at the crests. The main 
crestline of the dunes is obtained from an 
automated analysis of branches connectivity 
of each bedforms crestlines. The algorithm 
assigns a connection type and length class to 
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the segments and by iteration, removes the 
loops and keeps the longest segment to 
digitize the longest crestline pathway, here 
considered as the main crestline. 

 Finally, we used the mapped crestlines to 
refine dune contours where dunes are 
adjacent to one another. First, we consider 
each main crestline as belonging to a 
morphology. Then, we used a seed region 
growing algorithm which from the dune 
crestlines, generates borders and 
individualizes the dunes. 

4  RUB’AL KHALI APPLICATION 

The unsupervised classificator is trained 
on a set of 100 DEM samples with dunes. 
After the training, the mapping model is 
assessed from 20% of the samples and 
reaches 92% of precision, 87% of recall and 
70% of mapping quality. The mapping model 
of the dunes outline reveals a good 
performance and allows us to apply the 
protocol on eastern part of the Rub’Al Khali 
desert. This area is chosen because of its sand 
dunes diversity whose distribution and spatial 
variability (Fig.4A, B) at different scales of 
observation (Fig.4C) illustrate a variation of 
the wind regimes and the sand availability. 

 
Figure 4. The spatial variability and the different 

dune scales on the Rub’Al Khali desert (Abdallah and 
Kumar, 2011; McKee, 1979). A. Linear dunes defined 
as a “compound dunes”. B. Barchanoid dunes. C. An 
example of the second dune generation superimposed 
on the larger dunes. 

 

The different automated steps are applied 
on the DEM of the Rub’Al Khali and a map 
of the different dune forms and generation is 
produced (Fig.5A). More than 78,000 dunes 
and crestlines are mapped in 6 hours of 
processing. The aeolian morphologies 
automatically mapped represents a covered 
sand surface of 58,000 km² (Fig.5B). 

To demonstrate the model performance 
and applicability of the protocol in the 
analysis of the pattern’s geometry at a field 
scale, we calculated for each dune their 
length, width, height and the median 
orientation of their main crestline (Fig.5C).   

The morphometric analysis reveals a 
spatial variability of these parameters that 
quantify the diversity of the shapes at the 
field scale. This tool also provides an 
orientation estimate of the main crestlines 
which is related to the degree of dune 
organization.  

 
Figure 5. Part of the Rub’Al Khali dunes map 

produced by the automated protocol. A. Rub’Al Khali 
DEM and a barchan dune focus (on the right). B. 
Example of the automated mapping. The grey shapes 
are individualized dunes. The black lines are their 
mean crest. C. Spatial variability of the dune height 
(color gradient) and the crest orientation (black line).   
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5 CONCLUSION 

This work presents a semi-automatic 
protocol to extract the aeolian dunes and their 
morphological characteristics from a DEM. 
The different numerical steps allow to 
separate the dune scales, digitize the dunes 
shape and skeletonize the mean crestline by 
using the Residual Relief extraction, the 
training and using of an unsupervised 
classificator (Deep Learning – U-Net) and the 
Volumetric Obscurance approach 
respectively.  

This protocol reveals good performance to 
map various and complex dune forms. This 
work is an original production that completes 
atlases of this region present in the literature 
which illustrate the morphological 
boundaries defined by the aerial and satellite 
images interpretation (Abdallah and Kumar, 
2011; Barth, 2001; Glennie, 1970; McKee, 
1979).  

Finally, this work demonstrates the ability 
to produce quickly and accurately a large 
numerical database that can be used to study 
the dune geometry on a field scale that 
reflects spatial variations in wind dynamics 
and sediment routing.  
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